Zestaw instrukcji obsługi do generatora hybrydowego

- Generator wiatrowy z pionową osią seria NE 100W~400W
- Kontroler solarny hybrydowy "wind-solar" typu VAWT SW 300W/12V
- Przetwornica (inwerter) DC/AC z czystą sinusoidą na wyjściu AC do pracy w systemach solarnych
- ARZ-5D miernik mocy 3-fazowy do montażu na szynie DIN, z komunikacją RS-485/M-bus

www.biall.com.pl

INSTRUKCJA OBSŁUGI

Generatory wiatrowe z pionową osią serii NE 100W~400W

1. ZASADY BEZPIECZEŃSTWA

<u>Uwaga</u>

Dla prawidłowej instalacji i eksploatacji konieczne jest dokładne zapoznanie się z zawartością niniejszej instrukcji obsługi i ścisłe przestrzeganie kolejności czynności montażowych

Podstawowe wymagania

• Nie demontować samodzielnie generatora. Prosimy o skontaktowanie się z dystrybutorem jeżeli urządzenie nie działa prawidłowo

 Bez uzyskania autoryzacji, żaden użytkownik nie może ingerować i zmieniać wewnętrznej struktury generatora, co może wpływać negatywnie na bezpieczeństwo i wydajność generatora

Należy przestrzegać lokalnych regulacji przy eksploatacji wyrobu

Pozostałe uwarunkowania

• Przed przeprowadzeniem montażu i obsługi, prosimy o dokładne zapoznanie się z instrukcją obsługi

 Prosimy nie instalować generatora w dni deszczowe i gdy prędkość wiatru przekracza 3 stopnie w skali Beauforta

• Po otwarciu opakowania należy zewrzeć trzy końcówki kabla wyjściowego generatora wiatrowego

 Przed instalacją generatora należy wykonać instalację odgromową całej instalacji (konstrukcji). Instalację należy wykonać zgodnie z normami krajowymi, lokalnymi uwarunkowaniami i stanem (rodzajem) gruntu

 Przy montażu generatora, wszystkie łączniki montażowe powinny być dokręcone momentami zgodnie z tabelą niżej

Lp.	Łącznik	Opis	Ilość	Moment [Nm]	Uwagi
1	Śruby kołnierza	M12x45	4	45~55	Pokrycie galwaniczne
2	Podkładka okr.	8,3	8		Pokrycie galwaniczne
3	Podkładka spr.	8,2	4		Pokrycie galwaniczne

• Przed połaczeniem kołnierza generatora z kołnierzem masztu należy dokonać połaczenia kabla wyjściowego generatora z odpowiednim wewnętrznym okablowaniem masztu służącym do połączenia elektrycznego generatora z kontrolerem hybrydowym (łączymy 3 przewody, pamietajac o odpowiedniej jakości i szczelności połaczeń – można użyć np. łaczników zaciskowych z koszulkami termokurczliwymi). W zależności od rodzaju połaczenia odizolować przewody na odpowiedniej długości. Połączenie powinno być następnie zaizolowane trzema warstwami taśmy izolacyjnej acetatowej lub innej odpowiedniej na trudne warunki i umieszczone w rurce epoksydowo-szklanej oraz zalane odpowiednią masą uszczelniającą (najlepiej wykonać połaczenie jak dla mufy kablowej). Takie połaczenie wykonujemy dla każdej z 3-ch par przewodów. Uwaga: przy większych wysokościach masztu połączenie kabli może być za mocno obciążone, dlatego około 100mm poniżej połączenia należy dokonać odpowiedniego zamocowania kabla do konstrukcji masztu (wewnątrz). Po wykonaniu tych czynności kołnierz generatora może być połączony z kołnierzem masztu. W przypadku mocowania łącznikami śrubowymi czołowo do pierścienia zalecane jest stosowanie łączników M12 odpowiednio zabezpieczonych pokryciami galwanicznymi lub wykonanymi ze stali nierdzewnej. Momenty dokręcania łączników powinny odpowiadać momentom dokręcania śrub kołnierza zg z tabelą wyżej.

Uwaga: w zależności od konstrukcji masztu dopuszczalne stosowanie jest inaczej skonstruowanych pierścieni-adapterów służących do połączenia generatora wiatrowego z konstrukcją masztu. Zawsze jednak należy zapewnić wytrzymałość połączenia nie gorszą niż dla przypadku pierścienia mocującego podanego w instrukcji oraz odporność na wibrację i korozję (także elektrochemiczną)

 Przed podniesieniem generatora wiatrowego, odizolować przy podstawie końcówki kabla (służące do podłączenia do kontrolera) na długości ok. 10mm i zewrzeć je na krótko

 Podczas instalacji nie zaleca się w zasadzie pokręcania wirnikiem generatora (końcówki przewodów generatora przy podstawie masztu pozostają cały czas zwarte). Dopiero gdy cała instalacja jest zakończona i sprawdzona (także co dokręcenia łączników z odpowiednimi momentami) możemy rozewrzeć końcówki przewodów od generatora i następnie podłączyć generator i akumulator do kontrolera (najpierw podłączamy akumulator)

<u>Uwaga:</u>

Akumulatory powinny być podłączone do kontrolera w pierwszej kolejności. Dopiero po prawidłowym podłączeniu akumulatorów można przystąpić do podłączenia przewodów od generatora.

Jeżeli nie będą przestrzegane przy montażu i podłączeniach powyższe zasady i kolejność, to wynikiem tego mogą być uszkodzenia i inne problemy, które nie podlegają gwarancji.

2. OPIS PRODUKTU

 Mała prędkość startowa wiatru, duży stopień uzysku energii z wiatru, doskonałe wzornictwo, niski poziom wibracji

• Zaprojektowany przyjaźnie dla środowiska, prosta instalacja, obsługa i naprawy

Precyzyjne odlewy ciśnieniowe łopatek zaprojektowanych z optymalizacją kształtu o

odpowiedniej aerodynamice i strukturze, co daje tej konstrukcji przewagę nad innymi rozwiązaniami. Zapewnione wysokie wykorzystanie energii wiatrowej, co przyczynia się do uzyskania większej rocznej produkcji energii elektrycznej

 Generator wykorzystuje w konstrukcji technologię alternatora MAGLEV, ze specjalnym rodzajem konstrukcji statora pozwalającym na znaczne zmniejszenie oporów ruchu.
Dzięki temu generator wiatrowy pracuje płynnie przy zwiększonej niezawodności

Model	NE-100SV	NE-200SV	NE-300SV	NE-400SV		
Nr katalogowy	532003 (12V) 532001 (12V)					
Moc znamionowa	100W 200W 300W 400W					
Średnica wirnika	460mm 460mm 460mm 460mm					
Wysokość wirnika	800mm 800mm 1200mm 1200mm					
Znamionowa prędkość wiatru	11m/s 11m/s 11m/s 11m/s					
Prędkość startowa	1,5m/s 1,5m/s 1,5m/s 1,5m/s					
Max prędkość dopuszczalna	45m/s 45m/s 45m/s 45m/s					
Napięcie wyjściowe znamionowe	12V albo 24V 12V albo 24V 12V albo 24V 12V albo 24V					
Masa netto	14kg 15kg 16kg 17kg					
Ilość łopatek	10 10 12 12					
Materiał łopatek	Odlew ciśnieniowy ze stopów aluminium					
Typ generatora	3 fazowy generator AC synchroniczny, ze stałymi magnesami (typu Maglev)					
System regulacji	Elektromagnetyczny					
Regulacja kierunku prędkości wiatru	Automatycznie dostosowuje kierunek nawietrznej (
Sposób smarowania	Smar stały					
Temperatura pracy	$-40^{\circ}C \sim +80^{\circ}C$					

Dane techniczne:

3. MASZT I AKCESORIA

• Zalecany jest montaż generatora na maszcie, za pośrednictwem kołnierza wykonanego zgodnie ze szkicem niżej w tym przypadku przyspawanego do górnej części masztu

Rys 1. Szkic kołnierza do montażu wentylatora (materiał St)

Rys 2. Szkic montażowy masztu i wyposażenia przy wykorzystaniu do oświetlenia Uwaga: Kołnierz, maszt, panele PV i lampa nie wchodzą w skład zestawu

• Wysokość masztu zależy od lokalizacji, istniejących warunków wiatrowych i uwarunkowań geograficznych miejsca instalacji

4. MONTAŻ I INSTALACJA GENERATORA

Uwaga: zabroniony jest montaż generatora podczas deszczu

 Izolowany kabel energetyczny służący do przewodzenia prądu od generatora do kontro-lera jest prowadzony wewnątrz rury masztu. Górny kabel wychodzący przez centralny otwór kołnierza generatora jest połączony z kablem (patrz uwagi co do połączenia wyżej) przeciągniętym wewnątrz masztu do dołu. Powinien być on wyprowadzony z masztu na zewnątrz ok. 30cm powyżej poziomu gruntu. Odcinek od punktu wyprowadzenia do skrzynki usytuowanej poniżej gruntu, który będzie wynosił około 60cm pod ziemią powinien być chroniony za pomocą rur do ochrony kabla o odpowiedniej średnicy (dotyczy przykładowej instalacji z rozdzielnią umieszczoną poniżej gruntu)

• Montaż wirnika generatora wiatrowego (łopatek turbiny) przedstawiony jest na

rysunku niżej (dotyczy generatora dostarczanego w postaci niezmontowanej)

• Przy użyciu odpowiedniego wspornika podnieść maszt tak aby kołnierz mocujący umieszczony u góry masztu znalazł się na wysokości ok. 1,3m

• Przykręcić generator do masztu skręcając razem kołnierz generatora i kołnierz na maszcie (przewody wyjściowe generatora powinny być odpowiednio połączone z kablem umieszczonym wewnątrz masztu – patrz opis wyżej). Odizolować 3 końcówki kabla na dole masztu na dł. 10mm i zewrzeć je ze sobą.

• Podniesienie generatora i masztu powinno być przeprowadzone ostrożnie i przy zachowaniu bezpieczeństwa oraz z wykorzystaniem profesjonalnego sprzętu i wykwalifikowanego personelu. Stanowisko masztu, jej fundament i sposób mocowania masztu do fundamentu powinien odpowiadać przepisom budowlanym jak dla konstrukcji stacjonarnych (podczas montażu unikać pokręcania wirnikiem)

 Po instalacji na maszcie i po wykonaniu instalacji odgromowej przeprowadzić badanie rezystancji izolacji przy napięciu próby 500V. Badamy rezystancję izolacji pomiędzy każdym przewodem od generatora (lub zwartymi razem tymi przewodami) a uziemieniem (przewodem ochronnym). Zmierzona rezystancja izolacji powinna być większa od 5MΩ. Mniejsza rezystancja może świadczyć o złej izolacji lub jej uszkodzeniu.

Rys 3. Części składowe i montaż turbiny wiatrowej

5. PODŁĄCZENIE PRZEWODÓW CZYNNYCH GENERATORA DO KONTROLERA

OSTRZEŻENIE: Unikać uruchamiania systemu podczas silnego deszczu. Zalecane też jest aby uruchamiać generator przy niewielkiej prędkości wiatru do silnej (5~13m/s). Do czasu zakończenia montażu zapewnić aby wirnik generatora nie obracał się.

 Podłączyć prawidłowo akumulator do kontrolera (biegun dodatni do dodatniego, a biegun ujemny do ujemnego zacisku). Upewnić się też co do zgodności napięć znamionowych kontrolera i akumulatora

• Podłączyć 2 obciążenia do odpowiednich terminali kontrolera, stosując w obwodzie obciążenia odpowiednie bezpieczniki/wyłączniki (patrz IO kontrolera)

• Podłączyć 3 przewody prądowe kabla od generatora do odpowiednich zacisków kontrolera (należy odnieść się do instrukcji obsługi kontrolera)

• Dobór akumulatorów. Kontroler jest przystosowany do współpracy z akumulatorami szczelnymi typu VRLA AGM i żelowymi. Zalecana pojemność:

- dla mocy generatora 100W~300W pojemność 100Ah (opcjonalnie 200Ah)

- dla mocy generatora 400W pojemność 200Ah (opcjonalnie 400Ah)

• Kontroler powinien być usytuowany w miejscu suchym i dobrze wentylowanym, wolnym od wilgoci i kurzu. Obudowa kontrolera powinna być uziemiona, a sam kontroler powinien znajdować się min. 1,5m od akumulatora dla uniknięcia oddziaływania gazów mogących powstawać podczas eksploatacji

 Akumulator powinien być umieszczony w miejscu suchym, dobrze wentylowanym, ciepłym w zimie i chłodnym latem co sprzyjać będzie dłuższemu czasowi eksploatacji bez potrzeby obsługi

UWAGA: Akumulator powinien być podłączony do kontrolera przed podłączaniem do niego generatora.

Usterki powstałe na skutek nieprzestrzegania procedur kolejności montażu /uruchamiania zawartych w instrukcji nie podlegają gwarancji

Rys 4. Schemat podłączeń do kontrolera

6. OBSŁUGA I ŚRODKI OSTROŻNOŚCI

• Generator wiatrowy pracuje w trudnych warunkach środowiskowych. Należy okresowo sprawdzać stan ogólny i poziom hałasu generatora. Sprawdzać czy kołysania masztu nie spowodowały poluzowania się kabli.

• Okresowa kontrola powinna być przeprowadzona zwłaszcza po okresie występowania silnego wiatru. Jeżeli wystąpiłby jakiś problem to należy ostrożnie opuścić maszt do odpowiedniej wysokości dla przeprowadzenia serwisu. Jeżeli mówimy o zastosowaniu generatora do oświetlenia ulicznego, to elektryk może dokonywać przeglądu serwisowego na maszcie po odłączeniu przewodów generatora od kontrolera i ich zwarciu razem i po przygotowaniu odpowiednich środków bezpieczeństwa

• Bezobsługowe akumulatory powinny być utrzymywane w ekstremalnej czystości

• Nie demontować (rozbierać) generatora samodzielnie. Prosimy o kontakt z dystrybutorem, jeżeli generator nie pracuje normalnie

7. GWARANCJA JAKOŚCIOWA

• Producent gwarantuje, że dostarczony produkt jest najwyższej jakości, pracuje prawidłowo, generator jest kompletny i rygorystycznie sprawdzony przed wysyłką

 Gwarancja nie obejmuje uszkodzeń wynikłych z nieprawidłowego montażu, samodzielnego rozbierania lub poważnych uchybień co do sposobu użycia (niezgodnych z instrukcją obsługi)

 Zachować gwarancję i instrukcję obsługi tak aby można się do nich odwołać w każdej chwili

8. OCHRONA ŚRODOWISKA

X

Urządzenie podlega dyrektywie WEEE 2002/96/EC. Symbol obok oznacza, że produkt musi być utylizowany oddzielnie i powinien być dostarczany do odpowiedniego punktu zbierającego odpady. Nie należy go wyrzucać razem z odpadami gospodarstwa domowego. Aby uzyskać więcej informacji, należy

skontaktować się z przedstawicielem przedsiębiorstwa lub lokalnymi władzami odpowiedzialnymi za zarządzanie odpadami.

Generatory wiatrowe z pionową osią serii NE 100W~400W

NE300SV NE200SV nr kat. 532001 nr kat. 532003

Wyprodukowano w Chinach Importer: BIALL Sp. z o.o. UI. Barniewicka 54C 80-299 Gdańsk www.biall.com.pl

INSTRUKCJA OBSŁUGI

Kontroler solarny hybrydowy "wind-solar" typu VAWT SW 300W/12V

1. ZASADY BEZPIECZEŃSTWA

<u>Uwaga</u>

Dla prawidłowej instalacji i eksploatacji konieczne jest dokładne zapoznanie się z niniejszą instrukcją obsługi i ścisłe przestrzeganie kolejności czynności montażowych

- Zapoznać się dokładnie i ze zrozumieniem z niniejszą instrukcją obsługi przed rozpoczęciem montażu i eksploatacji. Zachować instrukcję tak aby w każdej chwili można było się do niej odwołać
- Tylko doświadczony personel może dokonywać instalacji i uruchomienia kontrolera, a proces instalacji musi przebiegać dokładnie zg. z instrukcją obsługi
- Należy unikać aby kontroler znajdował się w długim okresie w środowisku wilgotnym lub gazów agresywnych powodujących korozję
- Nigdy nie instalować kontrolera w środowisku wilgotnym, narażonym na deszcz, narażonym na oddziaływanie słońca, dużego zapylenia, wibracji, chronić kontroler przed korozją i silnymi interferencjami elektromagnetycznymi

2. OPIS WYROBU

- Kontroler jest przeznaczony do współpracy z generatorem wiatrowym i panelami słonecznymi PV. Służy nie tylko do efektywnego transferu energii z generatora i paneli PV do ładowania akumulatora, ale także dostarcza rozbudowane funkcje kontrolne
- Kontroler wykorzystuje algorytmy PWM ładowania impulsowego do inteligentnego ładowania akumulatora energią dostarczaną przez turbinę wiatrową i panele PV. Gdy akumulatory są w pełni naładowane, to energia generowana przez panele PV oraz generatory wiatrowe musi być ograniczana - system sterowania musi chronić akumulatory przed przeładowaniem. Nadmiar energii jest kontrolowany przez system nadzoru – odpowiednie do warunków ograniczanie lub odłączenie mocy (bieg jałowy)
- Standardowy kontroler nie potrafi pobierać energii przy niskich prędkościach wiatru, ten kontroler posiada funkcję doładowania (opcjonalne wykonanie), co pozwala na pełne wykorzystanie energii wiatrowej nawet przy małych prędkościach wiatru
- Akumulator może przyjmować tylko pewne dawki prądu ładowania przy napięciu ładowania spoczynkowego, a nadmierne napięcie ładowania akumulatora może spowodować poważne uszkodzenia. Kontroler wykorzystuje specjalny chip do wykrywania w czasie rzeczywistym napięcia i prądu ładowania akumulatora i ogranicza odpowiednio prąd ładowania z generatora i paneli PV do wartości nieprzekraczających bieżącego dopuszczalnego napięcia i prądu ładowania akumulatora. Pozwala to na utrzymanie pełnego naładowania akumulatora jak i chroni go przed przeładowaniem. Wydłuża to okres bezobsługowej eksploatacji akumulatora
- Cyfrowy, inteligentnie sterowany, rdzeń urządzenia stanowi zaawansowany mikro- kontroler, zapewniający jednocześnie że struktury zewnętrzne układu są proste, a regulacje trybów pracy i strategie są elastyczne i wydajne. Układy mocy zastosowane w kontrolerze wykonane są z wysokiej jakości importowanych komponentów, w celu zapewnienia wysokiej wydajności i stabilności kontrolera
- Doskonałe funkcje zabezpieczające, w tym: przed wyładowywaniem piorunowym, anty- anty ładowaniem paneli PV, automatyczne ograniczanie

nadmiernego prądu i napięcia, przed odwrotnym podłączeniem akumulatora, przy stanie rozwarcia

3. CHARAKTERYSTYKA KONTROLERA

- Inteligentna konstrukcja o zwartej strukturze, zapewnia regulację dużych mocy, stabilną pracę, bezpieczeństwo i niezawodność
- Zwiększenie mocy funkcji ładowania akumulatora rozwiązuje problem niskiej wydajności ładowania ze względu na małą prędkość wiatru (funkcja opcjonalna)
- Zastosowane stopniowane ładowanie PWM zmniejsza straty
- Wyświetlacz LCD wskazujący napięcie i moc
- Profesjonalne cyfrowe inteligentne sterowanie
- Perfekcyjna ochrona

Funkcja ochrony	Opis	Uwagi
Antyładowanie PV	W okresie nocy napięcie akumulatora może być większe niż napięcia wejściowe stringów PV. Kontroler z ochroną przed antyładowaniem chroni akumulator przez rozładowywaniem	
Ochrona przy odwrotnym podłączeniu akumulatora	Kontroler nie może pracować i LCD nie wyświetla się przy takim podłączeniu	Dokonać prawidłowego podłączenia
Ochrona przy rozwarciu obwodu	Po długim czasie eksploatacji może dojść do rozwarcia lub uszkodzenia zestyków co spowo- duje rozwarcie w obwodzie akumulatora	Sprawdzać okresowo stan wszystkich połączeń
Nadmierne napięcie, nad- mierna prędkość wiatru, przeciążenie	Przy silnym wietrze lub nadmiernym napięciu kontroler automatycznie uruchamia funkcję hamowania. Przy przeciążeniu kontroler automatycznie odcina obwód	Rezystory odzysku zastosowane w obwo- dzie mogą wymagać przeglądu

4. FUNKCJE OCHRONY

5. OPIS OGÓLNY WYŚWIETLACZA LCD

LCD: jeżeli kontroler pracuje, to wyświetlacz cyfrowy wskazuje aktualne napięcie akumulatora, co pozwala użytkownikowi na przybliżoną ocenę stanu naładowania akumulatora. Ponadto w dolnym wierszu stan naładowania wskazują wyświetlane w sposób ciągły "belki" bargrafu analogowego. Każda z belek odpowiada 25% pełnego naładowania. Pozwala to na podjęcie decyzji co do odpowiedniego dostosowania mocy obciążenia lub zmiany czasu pracy obciążenia (w trybie "ROAD" - patrz dalszy opis szczegółowy).

Ja. Anton which where the second second

6. WIDOK POGLĄDOWY SYSTEMU

Schemat systemu mocy generator wiatrowy + panele PV

7. INSTALACJA I OBSŁUGA

Instalacja kontrolera powinna być wykonana przez odpowiednio wykwalifikowany personel i przy ścisłym przestrzeganiu kolejności montażu i innych zaleceń zawartych w niniejszej instrukcji.

Po skompletowaniu wyposażenia systemu włączając w to generator wiatrowy, panele PV i wszystkie niezbędne akcesoria montażowe zarówno do mocowań jak i wykonania instalacji elektrycznej możemy przystąpić do montażu całego systemu. Mocowanie generatora i paneli PV do konstrukcji powinno być wykonane z dużą starannością i zapewnieniem stabilności i zabezpieczeniem połączeń śrubowych przed odkręcaniem nawet w warunkach wibracji (odpowiednie momenty i zabezpieczenia). Wszystkie zewnętrzne obwody elektryczne powinny być z uwagi na bardzo trudne środowisko wykonane również starannie i z materiałów (kabli) odpowiednich dla warunków pracy.

Kolejność montażu

(1) Sprawdzić po otwarciu przesyłki czy urządzenie nie jest uszkodzone

(2) Zamontować kontroler w odpowiedniej lokalizacji (UWAGA: lokalizacja powinna spełnić wymagania co do przestrzeni umożliwiającej odpowiednią wentylację, ochronę przed wilgocią i pracę w temperaturze nieprzekraczającej dopuszczalnej temperatury pracy kontrolera)

(3) Do montażu elektrycznego stosować kable miedziane wielodrutowe (typu linka) o przekrojach zapewniających przepływ prądu z min dopuszczalnymi stratami. Najpierw określić niezbędną długość kabli i odpowiednio dobrać przekroje zgodnie z wymaganiami

(4) Przewody do podłączenia akumulatora nie powinny być dłuższe niż 1m, a ich przekroje powinny być odpowiednio dobrane w zależności od max prądu ładowania (~4A/1mm²).

Najpierw podłączamy przewody do terminali akumulatora kontrolera: czerwony do zacisku "+", a czarny do zacisku "-". Następnie podłączamy te przewody,

zaopatrzone wcześniej w odpowiednio zamontowane końcówki oczkowe (lub inne zakończenia w zależności od istniejących terminali akumulatora) do akumulatora.

UWAGA: Akumulator powinien być wcześniej umieszczony na stałe w swoim osobnym pomieszczeniu, najczęściej ok. 0,6m pod poziomem gruntu (w naszych warunkach klimatycznych) z zapewnieniem wentylacji i jednocześnie pełnej ochrony przed zawilgoceniem.

Przy podłączaniu bezwzględnie zapewnić prawidłowe podłączenie co do polaryzacji: czerwony "plusowy" do bieguna dodatniego "+", a czarny "ujemny" do bieguna ujemnego "-" (niezależnie od ochrony kontrolera przed odwrotnym podłączeniem akumulatora).

(5) Rozłączyć zwarte 3 końcówki kabla generatora i podłączyć je do 3 zacisków kontrolera A,B,C. Ponieważ generator wytwarza 3-fazowe napięcie AC, kolejność podłączania tych przewodów jest w zasadzie dowolna. Natomiast samo podłączanie powinno odbywać się przy nieruchomym lub wolno obracającym się wirniku generatora. Zachować ostrożność gdyż każdy z podłączonych przewodów może być pod napięciem

(6) Podłączyć przewody "dodatni" i "ujemny" paneli PV do odpowiednich terminali kontrolera. Zasłonić panele tak aby nie wytwarzały one napięcia i podłączyć przewody wyprowadzone do paneli PV z ich wyprowadzeniami pamiętając o prawidłowej polaryzacji podłączeń

(7) Sprawdzić jakość podłączeń. Następnie można odblokować wirnik generatora i odsłonić panele, rozpoczynając w ten sposób pracę systemu

Zasady obsługi systemu: wyświetlacz LCD, diody LED i przyciski funkcyjne Wyświetlacz LCD: Dwuwierszowy wyświetlacz alfanumeryczny

2 zielone diody LED: Świecenie wskazuje na ładowanie z generatora (dioda lewa) i na ładowanie z paneli PV (dioda prawa)

1 czerwona dioda LED: Świecenie wskazuje na wystąpienie usterki

Przycisk "SET": Przycisk zmiany ustawień lub zmian wartości parametru

Przycisk "Page": Przycisk do przejścia do następnego ekranu z zatwierdzeniem ustawionych parametrów bieżącego ekranu

Po uruchomieniu wyświetlacz LCD kontrolera powinien zaświecić się wskazując: Górny wiersz: UB – napięcie akumulatora

EB – stan ładowania (migający bargraf) i stan naładowania akumulatora (świecące na stałe "belki" bargrafu, każda "belka" odpowiada 25% pełnego naładowania)

Wciskamy "Page", wyświetli się ekran:

Górny wiersz: SET MODE

Dolny wiersz: ROAD albo HOME – wybierane przyciskiem "SET"

- ROAD ten tryb wybieramy dla pracy oświetlenia z automatycznym włącznikiem zmierzchowym na wyjściach obciążenia L1 i L2
- HOME ten tryb wybieramy dla pracy ciągłej obydwu obciążeń L1 i L2. Odłączenie obciążenia w tym trybie jest tylko możliwe przez osobne wyłączniki. Ten tryb pracy należy też wybrać jeżeli do akumulatora jest podłączony zewnętrzny inwerter DC/AC. (Przy podłączeniu zewnętrznego inwertera należy pamiętać, że także w stanie jałowym będzie on pobierał pewien prąd oraz, że kontroler nie ma możliwości przy pracy inwertera odłączyć go przy nadmiernym spadku napięcia akumulatora. W tym przypadku rozłączenie będzie zależeć od zabezpieczeń inwertera)

Wciskamy "Page", wyświetli się ekran: Górny wiersz: SET TIME1 Dolny wiersz: 01H ustawiane do 16H przyciskiem "SET" (praca od 1h do 16h)

Wciskamy "Page", wyświetli się ekran: Górny wiersz: SET TIME2 Dolny wiersz: 01H ustawiane do 16H przyciskiem "SET" (praca od 1h do 16h)

Wciskamy "Page", wyświetli się ekran: Górny wiersz: PI: 00,0A aktualny prąd ładowania dostarczany z generatora Dolny wiersz: SI: 00,0A aktualny prąd ładowania dostarczany z generatora

Wciskamy "Page", wyświetli się ekran:

Górny wiersz: SET LV – ustawienie napięcia akumulatora odcięcia obciążenia (LVD) Dolny wiersz: domyślenie 11,2V możliwość ustawienia innego napięcia

Wciskamy "Page", wyświetli się ekran:

Górny wiersz: SET LVR – ustawienie napięcia ponownego załączenia obciążenia (LVR)

Dolny wiersz: domyślenie 12,4V, możliwość ustawienia innego napięcia

Wciskamy "Page", wyświetli się ekran:

Górny wiersz: SET PVT – ustawienie czasu znacznego ograniczenia prądu ładowania z paneli PV, w przypadku pełnego naładowania akumulatora Dolny wiersz: domyślnie 000 min, możliwość ostawienia czasu od 10min do 110min

Kolejne wciśnięcie przycisku "Page" powoduje zatwierdzenie ustawień i powrót do ekranu domyślnego.

8. UWARUNKOWANIA ŚRODOWISKOWE

- Kontroler powinien pracować w miejscu suchym, czystym i dobrze wentylowanym
- Unikać bezpośredniego oddziaływania promieniowania słonecznego, nie wystawić na działanie deszczu, gazów agresywnych, kurzu, wilgoci i środowiska korozyjnego
- Zachować odległość, co najmniej 0,5m od akumulatora
- Temperatura otoczenia -25°C ~ +55°C
- Wilgotność otoczenia < 85% RH (dla 25°C ± 5°C)

9. BEZPIECZENSTWO I OCHRONA

Funkcje ochrony: odgromowa, przed odwrotnym przepływem prądu od akumulatora do paneli PV, automatyczne ograniczenie nadmiernego napięcia i prądu ładowania, przed odwrotnym podłączeniem akumulatorów, przed rozwarciem

UWAGA: Ochrona odgromowa to ostatni stopień ochrony jaki może być niezbędny zwłaszcza w przypadkach instalacji w lokalizacjach narażonych na wyładowania atmosferyczne. Układy ochrony odgromowej kontrolera będą wtedy niewystarczające i należy zastosować odpowiednie dodatkowe zabezpieczenie SPD kontrolera

10. ANALIZA USTEREK

(1) Pytanie: Prędkość wirnika spada znacznie po podłączeniu go do kontrolera (wirnik obraca się ze słyszalnym "terkotem")

- (1) Napięcie akumulatora jest na tyle wysokie, ze kontroler wchodzi w tryb ładowania spoczynkowego.
- (2) Napięcie znamionowe wyjściowe generatora jest wyższe niż napięcie znamionowe akumulatora. Napięcie wyjściowe generatora jest proporcjonalne do jego prędkości gdy jest ono za wysokie automatycznie zostaje uruchomiane hamowanie wirnika. Należy sprawdzić parametry znamionowe.

(2) Pytanie: Dlaczego kontroler odłącza się, jeżeli wskazywany jest mały poziom prądu?

(1) Pomiar napięcia akumulatora i prądu ładowania to 2 parametry, które służą do określania momentu odłączenia kontrolera. Osiągnięcie napięcia ładowania spoczynkowego, biorąc jednocześnie pod uwagę przy jakim prądzie ładowania to nastąpiło, będzie podstawą do decyzji odstawienia generatora wiatrowego.

(3) Pytanie: Dlaczego nie wyświetla się LCD?

- (1) Podłączenie akumulatora jest wadliwe. Sprawdzić połączenie
- (2) Akumulator jest uszkodzony. Sprawdzić i wymienić akumulator

SW-300W				
12 (V)				
200Wp max				
300W max				
30A				
14,4V				
13,2V				
13,8V				
11,2V (domyślne) – ustawiane				
12,4V (domyślne) - ustawiane				
16,5V				
15,0V				
-24mV/°C				
<0,1A				
<0,5V				
MPPT (ładowanie PV), PWM (rozładowywanie, ładowanie spoczynkowe)				

11. SPECYFIKACJA TECHNICZNA 🦳

Ładowanie BOOST	Adaptacyjny niezależny układ (wyposażenie dodatkowe)
Wyświetlane parametry	Napięcie, prąd ładowania, zakumulowana energia
Sposób prezentacji wyników	Wyświetlacz LCD
Rodzaje ochrony	Odgromowa, przed odwrotnym prądem ładowania paneli, przed rozwarciem akumulatora, przed odwrotną polaryzacją akumulatora, przed za dużą prędkością wiatru i przed nadmiernym napięciem - automatyczne włączanie hamowania wirnika, przed przeładowaniem
Sposób chłodzenia	Radiator
Temperatura otoczenia	-25°C ~ +55°C
Wysokość pracy	<5500m n.p.m (2000m n.p.m. bez redukcji mocy)
Wymiary (szer x wys x gł)	140x64x165mm
Masa	1150g

12. OBSŁUGA POSPRZEDAŻNA

Urządzenie podlega gwarancji w okresie 1 roku od daty sprzedaży. I dalszej nieograniczonej czasowo obsłudze. Przekroczenie terminu gwarancji, uszkodzenia podczas transportu lub wynikłe z innych czynników niż podczas eksploatacji, uszkodzenia spowodowane katastrofą naturalną i/lub uszkodzeniami spowodowanymi przez te czynniki nie podlegają gwarancji i nie mogą być podstawą jakichkolwiek roszczeń w stosunku do producenta i dystrybutora. Jeśli nie ma żadnych specjalnych sformułowań w umowie, to ostatnie ustalenia umowy/gwarancji są obowiązujące.

Uwaga: producent zastrzega sobie możliwość wprowadzania zmian i modernizacji konstrukcji bez powiadomienia

13. OCHRONA ŚRODOWISKA

Urządzenie podlega dyrektywie WEEE 2002/96/EC. Symbol obok oznacza, że produkt musi być utylizowany oddzielnie i powinien być dostarczany do odpowiedniego punktu zbierającego odpady. Nie należy go wyrzucać razem z odpadami gospodarstwa domowego. Aby

uzyskać więcej informacji, należy skontaktować się z przedstawicielem przedsiębiorstwa lub lokalnymi władzami odpowiedzialnymi za zarządzanie odpadami.

VAWT SW 300W/12V nr kat. 532002 Kontroler hybrydowy MPPT/PWM Wyprodukowano w Chinach Importer: BIALL Sp. z o.o. UI. Barniewicka 54C 80-299 Polska www.biall.com.pl

PRZETWORNICE (INVERTERY) DC/AC z czystą sinusoidą na wyjściu AC do pracy w systemach solarnych

seria NV-Pxxxx - /12/24/48VDC

1. Opis wyrobu

Modele z serii NV-P12/24/48 to inwertery/falowniki 50Hz zamieniające napięcie 12/24/48V DC na napięcie 230V 50Hz sinusoidalne. Ten kompaktowy i bardzo funkcjonalny wyrób jest jedną z nowocześniejszych konstrukcji inverterów wykorzystujących technologię wysokich częstotliwości, co pozwala na uzyskanie na wyjściu możliwie dokładnego przebiegu sinusoidy i wysokiej sprawności (THD <=3%, sprawność 90%). Jest zaprojektowany do bezusterkowej pracy przez wiele lat dzięki automatycznym układom monitoringu dla ochrony invertera i akumulatora przed przeciążeniami. Ochrona obejmuje automatyczne wyłączenie obniżonym napięciu akumulatora, wystapieniu nadmiernie impulsu przy wysokonapięciowego i przekroczeniu temperatury. Wyjście jest chronione przed zwarciem i przeciążeniem. Dodatkowo bezpieczeństwo zwiększa podłączenie inwertera do lokalnego uziemienia (specjalny zacisk na obudowie).

Należy uważnie przeczytać i zachować niniejszą instrukcję instalacji i obsługi przetwornicy.

Dla wykorzystania pełnych możliwości przetwornic, użytkownik powinien zapewnić prawidłową instalację i eksploatację wyrobu.

2. Środki bezpieczeństwa

Nieprawidłowa instalacja lub przekroczenia parametrów przetwornicy może spowodować zagrożenia dla użytkownika lub wystąpienie ryzyka zranień i porażenia elektrycznego.

Zwracamy specjalną uwagę na stosowanie się do ostrzeżeń i zaleceń sygnalizowanych w informacjach OSTRZEŻENIA i OSTROŻNIE. OSTROŻNIE dotyczy uwag, których nieprzestrzeganie grozi uszkodzeniem przetwornicy lub innego sprzętu. OSTRZEŻENIA wskazują na sytuacje, gdzie nieprzestrzeganie środków bezpieczeństwa może być przyczyną obrażeń i/lub porażenia elektrycznego grożącego utratą życia.

Prosimy o dokładne zapoznanie się z poniższymi środkami bezpieczeństwa.

Niebezpieczeństwo porażenia. Trzymać w oddaleniu od dzieci.

- Przetwornica wytwarza takie same potencjalnie niebezpieczne dla życia napięcie AC, jakie normalnie znajduje się w gniazdku domowej instalacji elektrycznej. Należy postępować dokładnie tak samo ostrożnie jak mielibyśmy do czynienia z domową instalacją elektryczną.
- 2) Nie wolno umieszczać żadnych przedmiotów w gniazdku wyjściowym AC, otworach wentylacyjnych lub wentylatorze przetwornicy.
- 3) Nie wystawiać przetwornicy na działanie wody, deszczu, śniegu lub spryskiwania.
- 4) Nie wolno, w żadnych okolicznościach, podłączać gniazda wyjściowego AC przetwornicy do instalacji elektrycznej.

Gorąca powierzchnia

- Obudowa przetwornicy może osiągać dość wysokie temperatury (do 60°C) przy pracy z dużą mocą. Należy zapewnić co najmniej 15cm wolnej przestrzeni co do dostępu powietrza ze wszystkich stron przetwornicy.
- 2) Podczas pracy, usunąć z otoczenia materiały, które mogą ulec zniszczeniu przy podwyższonej temperaturze.

Niebezpieczeństwo eksplozji

 Nie używać przetwornicy w obecności palnych substancji lub gazów, jak np. w zęzie jachtu, gdzie magazynowane jest paliwo lub w pobliżu butli gazowych z propanem-butanem. Nie zabudowywać przetwornicy razem z akumulatorem kwasowo-ołowiowym typu samochodowego. Akumulatory te, inaczej zwane zalewowymi wytwarzają wybuchowy gaz – wodór, który tworząc z powietrzem mieszaninę wybuchową może eksplodować pod wpływem iskry elektrycznej powstałej np., podczas podłączania przewodów, wtyków, itp.

A OSTROŻNIE

- Nie podłączać napięcia z instalacji elektrycznej do gniazda wyjściowego AC przetwornicy. Przetwornica ulegnie zniszczeniu, nawet jeżeli jej włącznik będzie w położeniu "Wyłączone" ("O").
- 2) Nie wystawiać przetwornicy na działanie temperatury > 40°C.

Przetwornicę podłączać tylko do akumulatorów o nominalnym napięciu wyjściowym 12V/24V/48V (w zależności od modelu). Akumulator o niższym nominalnym napięciu zasilania (6V/12V/24V) nie zapewni wystarczającej wartości napięcia, natomiast akumulator o wyższym nominalnym napięciu (24V/48V/96V) uszkodzi przetwornicę.

Nie używać przetwornicy z następującym wyposażeniem:

- Drobne wyroby zasilane z akumulatorów jak lampy sygnalizacyjne, niektóre akumulatorowe golarki, lampki nocne podłączanie bezpośrednio do gniazd sieciowych dla doładowania.
- 2) Niektóre ładowarki do pakietów akumulatorów używanych w narzędziach elektrycznych. Ładowarki te mają etykiety ostrzegawcze informujące o niebezpiecznym napięciu występującym na terminalach ładowarki.

Zabronione jest dokonywanie jakichkolwiek przeróbek urządzenia.

3. Funkcje auto-ochrony

Zaawansowane funkcje ochrony zastosowane w przetwornicy (elektroniczna ochrona przeciążeniowa z auto-wyłączeniem):

- Wewnętrzny bezpiecznik DC zapewnia dodatkowe bezpieczeństwo.
- Gdy napięcia akumulatora spadnie poniżej określonego progu, nastąpi automatyczne wyłączenie przetwornicy.
- Gdy napięcie akumulatora wzrośnie powyżej określonego progu, nastąpi automatyczne wyłączenie przetwornicy.
- Ochrona termiczna z automatycznym wyłączeniem przetwornicy
- Ochrona zwarciowa na wyjściu przetwornicy.

4. Charakterystyka produktu

Przed przystąpieniem do użytkowania przetwornicy należy upewnić się, że zapoznano się z podstawową charakterystyką produktu. Wygląd i rozmieszczenie elementów obsługi w zależności od modelu (mocy).

1--- Gniazda wyjściowe AC: możliwość podłączenia różnorodnych urządzeń 230V AC z ciągłym poborem mocy równym lub mniejszym od mocy znamionowej. Oferowane przez nas przetwornice wyposażone są zgodnie z obowiązującym w Polsce standardem w gniazda sieciowe typu F.

2--- Port USB: 5V DC, 500mA.

3--- Przełącznik AC: włączenie/wyłączenie wyjścia AC. Gdy ustawiony w pozycji "włączony" ("I") na wyjście AC podawane jest napięcie 230V AC.

4--- Zielona dioda LED: wskazuje obecność napięcia AC w gniazdach AC oraz normalną pracę przetwornicy.

5--- Czerwona dioda LED: wskazuje wyłączenie przetwornicy w wyniku nadmiernego spadku lub wzrostu napięcia, przeciążenia lub przegrzania.

6--- Wentylator: obniża temperaturę przetwornicy. Należy utrzymać go w czystości w całym okresie eksploatacji.

7--- Terminal ujemny (-): przy pomocy odpowiedniego przewodu (czarnego) podłączyć do bieguna ujemnego (-) akumulatora (w pierwszej kolejności).

8--- Terminal dodatni (+): przy pomocy odpowiedniego przewodu (czerwonego) podłączyć do bieguna dodatniego (+) akumulatora (w drugiej kolejności).

9--- Terminal uziemienia: podłączyć do uziemienia lokalnego.

10--- Bezpiecznik: ochrona przetwornicy przed nadmiernie wysokim prądem (w niektórych modelach).

Kształty przebiegów wyjściowych:

Przetwornica jest przystosowana do ciągłego zasilania większości wyrobów zasilanych 230V 50Hz, które wymagają ciągłej mocy odpowiadającej lub mniejszej od znamionowej mocy przetwornicy. Przetwornica wytwarza przebieg wyjściowy o kształcie czystej sinusoidy, podobny do tego jaki istnieje w sieci energetycznej instalacji domowej.

5. Instrukcja instalacji

Wybór odpowiedniego miejsca instalacji przetwornicy

Dla bezpiecznej i optymalnej eksploatacji należy umieścić przetwornicę w miejscu:

- Suchym: nie narażać na opady lub natrysk wody.
- Chłodnym: używać tylko w przedziale temperatury 0 ~ 40°C. Trzymać z dala od wentylatorów pieców grzewczych lub innych urządzeń emitujących ciepło.
- **Przewiewnym**: pozostawić co najmniej 15cm wolnej przestrzeni z każdej strony dla zapewnienia odpowiedniej wentylacji.
- **Bezpiecznym** : Nie instalować we wspólnym pomieszczeniu z akumulatorami, palnymi cieczami (np. benzyna) lub wybuchowymi oparami.
- **Czystym** : Nie używać przetwornicy w miejscach o silnym zapyleniu, brudnych i generalnie zanieczyszczonych. Zwłaszcza gdy przetwornica jest używana w środowisku pracy z możliwością wystąpienia tego typu zagrożeń.

W związku z ograniczeniami standardowych gniazd 12V/24V/48V (w zależności od modelu) umieszczonych w samochodach czy łodziach, przetwornica powinna być używana do zasilania urządzeń o mocy znamionowej niższej niż moc znamionowa przetwornicy, jeżeli będzie ona podłączona do akumulatora za pośrednictwem tych gniazd.

1. Przed podłączeniem nowej przetwornicy należy sprawdzić, czy nie doszło do jej uszkodzenia w trakcie transportu. Następnie upewnić się, że włącznik przetwornicy jest w położeniu "wyłączone" ("O").

OSTROŻNIE: Zamiana polaryzacji przewodów przy podłączeniu akumulatora do przetwornicy grozi porażeniem elektrycznym i uszkodzeniem samej przetwornicy. Uszkodzenie spowodowane zamianą polaryzacji nie jest objęte gwarancją.

2. Ręcznie dokręcić nakrętki mocujące na gwintowanych trzpieniach terminali DC przetwornicy. Nie używać nadmiernej siły.

3. Jeżeli nie używamy przetwornicy zawsze należy ustawić przełącznik AC w pozycji "wyłączone" ("O")

4. Jeżeli przetwornica nie jest w użyciu przez dłuższy czas, należy odłączyć ją od akumulatora, aby zapobiec jego rozładowaniu (przez prądy jałowe)

Wykorzystanie przewodów z krokodylkami lub innych bezpośrednio podłączanych do akumulatora.

Dzięki bezpośredniemu podłączeniu przetwornicy do akumulatora 12V za pomocą krokodylków istnieje możliwość obsługi urządzeń o wymaganej mocy równej mocy znamionowej przetwornicy w sposób ciągły.

1. Przetwornica jest włączana ("I") lub wyłączana ("O") głównym przyciskiem zasilania.

2. Wentylator włącza się tylko gdy jest taka potrzeba (kontrola termiczna)

3. Po stwierdzeniu prawidłowego działania przetwornicy możemy podłączyć do niej odpowiednie urządzenie (przełącznik w pozycji "O")

4. Przetwornica jest gotowa do pracy i możemy podać napięcie wyjściowe do urządzenia ustawiając przełącznik w pozycji "I". Taki sposób włączania zmniejsza częściowo prądy rozruchowe.

6. Instrukcja obsługi i eksploatacji

Zakres stosowania przetwornicy

Wartość mocy (wyrażonej w watach) urządzeń AC to średnia moc wymagana. Wiele urządzeń AC przy uruchomieniu pobiera jednak większą moc niż moc znamionowa. Dla obciążenia takiego jak silnik, przy jego uruchomieniu pojawia się prąd rozruchowy. Należy mieć na uwadze, że prąd rozruchowy nie może przekroczyć maksymalnego prądu odpowiadającego chwilowej mocy przetwornicy (prąd rozruchowy silnika może być 7~12 razy wyższy niż prąd znamionowy) – skutkiem tego byłoby przeciążenie przetwornicy i jej wyłączenie.

OSTROŻNIE. Normalnym zjawiskiem jest, że napięcie spada przy dużym obciążeniu. Należy podjąć działania, gdy zaistnieją następujące zdarzenia:

Napięcie akumulatora spada poniżej 11,5V/21V/42V (w zależności od modelu)

Rozwiązanie:

- Zwiększyć pojemność akumulatora
- Zmniejszyć obciążenie przetwornicy

Napięcie wyjściowe spada poniżej akceptowalnego poziomu (210V AC) Rozwiązanie:

- Zwiększyć pojemność akumulatora
- Zmniejszyć obciążenie

Mimo, że przetwornica jest w stanie dostarczyć w krótkim okresie dużą moc chwilową, to urządzenia, których sumaryczna nominalna moc jest niższa niż nominalna ciągła moc wyjściowa mogą przekroczyć "możliwości chwilowe" przetwornicy oraz wyzwolić funkcję automatycznego wyłączenia przy przeciążeniu. Jeśli ten problem pojawia się przy próbie obsługi kilku urządzeń AC w tym samym czasie należy spróbować najpierw włączyć przetwornicę przy wyłaczonych urządzeniach AC. Następnie włączać koleine urzadzenia. rozpoczynając od tego, o najwyższej mocy chwilowej (najwyższym prądzie rozruchowym). Zakładamy przy tym, że akumulator ma dostateczną pojemność.

Obsługa przetwornicy

- Po prawidłowym podłączeniu przetwornicy do gniazda zasilania DC lub akumulatora o odpowiednim napięciu włączyć zasilanie włącznikiem (położenie włączone, "I"), zaświeci się zielona dioda LED i podane zostaje napięcie AC do gniazda wyjściowego.
- 2) Podłączyć wtyk danego urządzenia/urządzeń AC do gniazda/gniazd przetwornicy a następnie włączyć je (jedno po drugim)
- 3) Wraz z malejącą pojemnością akumulatora spada napięcie zasilające przetwornicę. Po spadku wartości napięcia zasilającego DC do 10,5~11,5V/21,5~23,0V/43~46V (w zależności od modelu) odzywa się alarm dźwiękowy. Sygnał, ten oznacza, że należy wyłączyć komputer lub inne urządzenia wrażliwe na nagłą utratę zasilania.
- 4) Jeśli alarm dźwiękowy zostanie zignorowany, przetwornica wyłączy się automatycznie przy spadku wartości napięcia do 9,5~10,5V/20,5~22V/41~44V (w zależności od modelu). Zapobiega to uszkodzeniu akumulatora przez jego nadmierne rozładowanie. Po automatycznym wyłączeniu zaświeci się czerwona dioda LED sygnalizująca usterkę.

Akumulatory samochodowe są zaprojektowane tak, aby zapewnić odpowiedni okres oddawania bardzo dużego prądu niezbędnego dla rozruchu silnika. Nie są one przeznaczone do długotrwałej pracy przy stosunkowo małym obciążeniu. akumulatorów przez Ciagle obciażanie takich przetwornicę do stanu wywołującego alarm dla obniżonego napięcia powoduje skracanie żywotności podłaczanie akumulatora. Zaleca się przetwornic do akumulatora przystosowanego do pracy bez problemów z takim charakterem obciążenia jeżeli będziemy często i w długim okresie podłączać urządzenia elektryczne do przetwornicy.

5) Jeżeli urządzenie AC przekracza poziom dopuszczalnego obciążenia ciągłego przetwornica wyłączy się automatycznie i zaświeci się czerwona dioda LED sygnalizująca usterkę.

- 6) Jeśli temperatura przetwornicy przekroczy bezpieczną wartość z powodu niewystarczającej wentylacji lub wysokiej temperatury otoczenia, nastąpi automatyczne wyłączenie, następnie zapali się czerwona dioda LED sygnalizująca usterkę oraz wydany zostanie sygnał dźwiękowy.
- Jeżeli uszkodzony układ ładowania akumulatora spowoduje, że jego napięcie wzrośnie do niebezpiecznego poziomu, przetwornica automatycznie wyłączy się.

OSTROŻNIE Mimo że przetwornica jest wyposażona w zabezpieczenia nadnapięciowe, to jednak może ulec uszkodzeniu przy przekroczeniu wartości napięcia 16,2V/31V/62V (w zależności od modelu).

8) Wentylator jest zaprojektowany do pracy tylko, gdy temperatura wzrasta powyżej 40°C.

9) W przypadku przeciążenia, niskiego napięcia akumulatora lub przegrzania przetwornicy, nastąpi automatyczne wyłączenie przetwornicy (patrz rozdział 7 Rozwiązywanie problemów).

10) W przypadku automatycznego wyłączenia przetwornicy z powodu przeciążenia należy odczekać kilka minut (w celu schłodzenia) i uruchomić ją ponownie. Sprawdzić przyczynę przeciążenia przed ponownym włączeniem.

Przetwornicę należy manualnie zresetować w przypadku jej automatycznego wyłączenia z powodu przeciążenia.

Czas pracy akumulatora

Czas pracy akumulatora zależy od stopnia jego naładowania, pojemności i mocy zużywanej przez podłączone obciążenie AC.

Jeżeli używamy akumulatora samochodowego zaleca się, aby uruchomić silnik co godzinę lub dwie w celu doładowania akumulatora, gdyż jego pojemność nie jest zbyt duża i akumulator dość szybko wyczerpuje się. Przetwornica może pracować przy włączonym silniku, ale przy uruchamianiu silnika napięcie akumulatora może obniżyć się przejściowo do poziomu powodującego przejściowe automatyczne rozłączania przetwornicy.

Przetwornica pobiera mniej prądu niż wynosi jej prąd jałowy (przełącznik AC w pozycji "l" i brak obciążenia), gdy przełącznik znajduje się w pozycji wyłączone ("0"). Ma to pewien pozytywny wpływ na czas pracy akumulatora.

9

Zakłócenia przy podłączaniu urządzeń elektronicznych

Co do zasady urządzenia AC pracują z przetwornicą, tak jakby pobierały prąd ze standardowego gniazda AC. Poniżej umieszczono informacje na temat możliwych wyjątków od tej zasady.

Przydźwięki w systemach audio i radiach

Niektóre systemy stereo, odtwarzacze typu "boom box" i radia AM/FM z niższego segmentu cenowego charakteryzują się filtrowaniem zasilania niskiej jakości, przez co mogą one emitować przydźwięki po podłączeniu do przetwornicy. Jedynym rozwiązaniem w takiej sytuacji jest zakup produktu charakteryzującego się wyższą jakością filtrowania zasilania.

Zakłócenia związane z sygnałem TV

Przetwornica jest zabudowana w celu zminimalizowania zakłóceń sygnału TV, jednakże przy słabych sygnałach TV zakłócenia mogą wystąpić w postaci linii pojawiających się na ekranie. Aby wyeliminować lub zminimalizować problem należy:

- Użyć przedłużacza w celu zwiększenia odległości między przetwornicą a telewizorem, antena i kablami.
- Zmienić położenie przetwornicy, telewizora, anteny i kabli. Poprawić jakość sygnału TV wykorzystując lepszą antenę i ekranowany kabel antenowy, tam adzie jest to możliwe.
- Zmienić odbiornik telewizyjny. Poszczególne odbiornik telewizyjne różnią się między sobą w zakresie podatności na zakłócenia.

Przetwornice z przebiegiem sinusoidalnym

Poniżej wypisano zalety przetwornic z przebiegiem sinusoidalnym względem przetwornic ze zmodyfikowanym przebiegiem sinusoidalnym:

1. Redukują zakłócenia akustyczne i elektryczne wentylatorów, wzmacniaczy audio, odbiorników telewizyjnych i niektórych wrażliwych systemów audio.

2. Obciążenia indukcyjne, takie jak kuchenki mikrofalowe lub silniki, mogą pracować szybciej, ciszej i bez nadmiernego nagrzewania się.

3. Następujące urządzenia mogą nie pracować prawidłowo z przetwornicami ze zmodyfikowanym przebiegiem sinusoidalnym:

- Niektóre ładowarki akumulatorów do bezprzewodowych narzędzi.
- Piece zwykłe i opalane granulatem sterowane mikroprocesorem.
- ub e. hub e. • Wrażliwe urządzenia elektryczne lub elektroniczne, takie jak niektóre urządzenia medyczne.

7. Rozwiązywanie problemów

7. Rozwiązywan	ie problemów	rall
Problem	Prawdopodobna przyczyna	Sugerowane rozwiązanie
	Uszkodzony akumulator.	Sprawdzić akumulator i ewentualnie wymienić.
Urządzenie AC nie pracuje, nie świeci się zielony LED po właczeniu (ON)	Zamieniona polaryzacja DC.	Sprawdzić podłączenie do akumulatora. Jeżeli była zamieniona polaryzacja przetwornica może być uszkodzona.
wiączeniu (ON)	Uszkodzone lub niedokładnie podłączone kable zasilania.	Sprawdzić kable i połączenia.
Przetwornica pracuje jedynie z małym obciążeniem.	Spadek napięcia na kablu zasilającym.	Skrócić kable lub zastosować kable o większym przekroju.
Mierzone napięcie wyjściowe przetwornicy jest zbyt niskie.	Pomiar napięcia wyjściowego woltomierzem AC daje wynik poniżej 200V.	Sprawdzić przez pomiar porównawczy miernikiem wyższej klasy (np. z True RMS) czy woltomierz mierzy prawidłowo napięcie.
	Napięcie akumulatora jest zbyt niskie.	Naładować akumulator.
Alarm włącza się	Automatyczne wyłączenie przetwornicy z powodu obniżenia napięcia lub przegrzania.	Skrócić kable lub zastosować kable o większym przekroju. Naładować akumulator. Pozwolić przetwornicy na powrót do normalnej temperatury. Poprawić obieg powietrza wokół przetwornicy. Umiejscowić przetwornicę w chłodniejszym otoczeniu. Zmniejszyć obciążenie jeśli wymagana jest praca ciągła.
Czas żywotności	Pobór mocy urządzenia AC jest większy niż podana moc znamionowa	Zastosować większy akumulator.
akumulatora jest mniejszy niż	Akumulator jest zużyty lub rozładowany.	Wymienić akumulator.
oczekiwany.	Akumulator jest prawdopodobnie nie	Zastosować ładowarkę większej mocy. Skrócić

	doładowywany.	kable lub zastosować kable
		o większym przekroju.
	Podłączone urządzenie AC	
	ma moc znamionową	Uzywac urządzen AC o
	większą od znamionowej	mocy znamionowej nie
	mocy przetwornicy;	większej niż moc ciągła
	nastąpiło rozłączenie na	przetwornicy.
	skutek przeciążenia.	
	Podłączone urządzenie AC	Urządzenie w momencie
	ma moc znamionową	rozruchu pobiera moc
	mniejszą od znamionowej	większą od
0	mocy przetwornicy;	dopuszczalnego
N.	nastąpiło rozłączenie na	chwilowego obciążenia.
100	skutek przeciążenia w	Używać urządzenia o
N/N.	momencie	mniejszym prądzie
Podłaczone	uruchomienia urządzenia.	rozruchowym.
urządzenie nie	Akumulator jest	Naładować akumulator
urządzenie nie działa, czerwona dioda LED sygnalizuje usterkę.	rozładowany.	Naladować akultulator.
		Wyłączyć przetwornicę i
		pozwolić jej na powrót do
		normalnej temperatury.
	Przetwornica przegrzała się	Wyczyścić wentylator lub
	ze względu na słabą	usunąć przedmioty
	wentylację i nastąpiło	ograniczające cyrkulację
	automatyczne wyłączenie.	powietrza wokół
		przetwornicy. Zmniejszyć
		obciążenie, jeśli wymagana
		jest praca ciągła.
		Sprawdzić czy system
	Naniecie weiściowe jest	ładowania jest prawidłowo
	$w_{1}/2$ sze niż 15 5 0\//31\//61\/	wyregulowany a napięcie
	(w zależności od modelu)	znamionowe akumulatora
		to 12V/24V/48V (w
		zależności od modelu)
	WWWWW	ormale
///] ~	
0,	0	

8.Specyfikacja techniczna wyrobów

Specyfikacja może ulec zmianie bez wcześniejszego powiadomienia.

i alamoti y ogomo

	- 7.21 M	I.V.S.				
Zasilanie DC	12V	24V	48V			
Napięcie wejściowe DC	11,5~15,5V 23,0V~31,0V 46,0~61,0V					
Napięcie wyjściowe AC	230V AC (+5% -10%)					
(znamionowe)	\(U,2"		, •)			
Częstotliwość wyjściowa AC						
(przebieg sinusoidalny)	50HZ (±0,5HZ)					
Temperatura pracy	15°C~50°C					
Kształt przebiegu AC		czysta sinusoida				
Wyzwalanie alarmu dla	10.5~11.5\/	21 5~22 0\/	12 0~16 01/			
niskiego DC	10,5~11,5V	21,5~25.00	43,0~40,00			
Rozłączanie dla niskiego DC	9,5~10,5V	20,5~22,0V	41,0~44,0V			
Rozłączanie dla wysokiego	15 5\/	211/	611/			
DC	10,5V	510	U			

CP= Moc ciągła

SP= Moc chwilowa

THD= Współczynnik zawartości harmonicznych

NL-OFF = Prąd jałowy przy odłączonym wyjściu AC (przełącznik w pozycji "O") NL-ON = Prąd jałowy przy włączonym wyjściu AC (przełącznik w pozycji "I") bez obciążenia

Specyfikacja może ulec zmianie bez wcześniejszego powiadomienia.

Model	CP	SP	Efektywność	THD	NL-OFF/NL-ON		[A]
		10			12V	24V	48V
NV-P300	300W	600W	90%	≤3%	<0,05/<0,4	<0,05/<0,3	b.d.
NV-P600	600W	1200W	90%	≤3%	<0,04/<0,6	<0,03/<0,5	b.d.
NV-P1000	1000W	2000W	90%	≤3%	<0,05/<0,8	<0,04/<0,5	b.d.
NV-P2000	2000W	4000W	90%	≤3%	<0,04/1,2	0,03/1	0,01/0,5
NV-P3000	3000W	6000W	90%	≤3%	<0,05/1,5	0,04/1	0,02/0,8

Tabela urządzeń obsługiwanych przez przetwornice

Sprzęt audio-video	Мос	150W	300W	600W	1000W	1500W	2000W
12" kolorowy telewizor	16W 🎸	677	NY -	1	1	1	1
Konsola do gier	20W	$\langle \mathbf{N} \rangle \langle \mathbf{N} \rangle$	1	1	1	1	1
Odbiornik TV satelitarnej	30W	N.	1	1	1	1	1
Sharp HiFi VCR –	40W	1	1	1	1	1	1
magnetowid	NINK						
Zmieniarka płyt/mini	60W	1	1	✓	1	1	1
system Kenwood 🔨 🚺 🔪	2						
19" kolorowy telewizor	80W	1	1	1	1	1	1
20" telewizor +	110W	1	1	1	1	1	1

magnetowid Quasar					~		
27" kolorowy telewizor	170W		1	1	N	1	1
Wzmacniacz stereo RCA 240W RMS	250W		1	1	\mathcal{N}	1	1
Zestaw kina domowego	500W			\sim	1	1	1
Sprzęt gospodarstwa domowego	Мос	150W	300W	600W	1000W	1500W	2000W
Maszyna do szycia Singer	99W	4 6	NUX2	1	1	1	1
Lampa halogenowa	100W	KI V	5	1	√	√	1
Pralka	250W	HILLY	1	1	1	1	1
Blender	350W	Nº -		1	✓	✓	✓ ✓
Koc elektryczny	400W			1	✓	✓	✓ ✓
Zmywarka "cool dry"	700W			-	✓	✓	✓ ✓
Lokówka	750W				✓		1
Mikrofalówka – 750W	900W				<u> </u>	<u> </u>	1
Odkurzacz	900W				· •		1
Ekspres do kawy	1200W				· ✓		1
Zmywarka "hot dry"	1450W						1
Zgniatarka do śmieci	1500W				1	1 10 10	1
Duża płyta kuchenki	2000W				frit.		1
					100	100	·
Sprzęt biurowy	Мос	150W	300W	600W	1000W	1500W	2000W
Fax (tryb standby)	5W	1	1	1	1	1	1
Drukarka atramentowa	35W	1	1	1	1	1	1
Laptop Toshiba Satellite	40W		\checkmark	1	1	1	1
Laptop Thinkpad	42W	1	1	1	1	1	1
Fax (drukowanie)	50W	1	1	1	1	1	1
Komputer stacjonarny	55W	1	1	1	1	1	1
17" Monitor kolorowy 🛛 📶	100W	1	1	1	1	1	1
Fax z autopodajnikiem i obcinaczem	165W		1	1	1	1	1
Drukarka laserowa	900W				1	1	1
Oświetlenie	Мос	150W	300W	600W	1000W	1500W	2000W
Żarówka 100W	100W	1	1	1	\checkmark	X	1
Podwójna lampa warsztatowa Regent	900W				1	SIL	1
Lampa przemysłowa Regent	1066W			5	202	S	1
Narzędzia	Мос	150W	300W	600W	1000W	1500W	2000W
Pistolet do klejenia Stanley	20W	1	(\land)	(AV	1	\checkmark	1
Polerka Black & Decker	77W	1	MIM	V	\checkmark	\checkmark	1
Narzędzie Moto Dremel	99W	10.6	NIN	1	\checkmark	\checkmark	1
Narzędzie obrotowe Craftsman	126W	1/2/10	J'su-	1	√	√	1
Lutownica Weller	132W	NJN.	1	1	1	1	1
Szlifierka Makita	176W	y	1	1	1	1	1
Szlifierka stołowa 5" Ironsmith	180W		1	1	1	1	1
Szlifierka przemysłowa Craftsman	220W		1	1	1	1	1
		1	1	L			
Szlifierka kątowa 4" Makita	529W			1	\checkmark	\checkmark	1

Wiertarka Jepson 1/2"	620W			1	1	1	
Pilarka szablasta DeWalt	720W			N	1	1	
Szlifierka 1/2hp	1080W			11	1	1	
Piła łańcuchowa 14"	1200W		~	101	> 1	1	
McCulloch			1	112			
Piła 7 ¼" Worm	1800W		$\sqrt{n^2}$	140		1	
Pilarka stołowa 10"	1800W√	/	1011			✓	

Typy przetwornic dostępne w ofercie firmy BIALL

Model (Moc)	P300/xxDC	P600/xxDC	P1000/xxDC	P2000/xxDC	P3000/xxDC				
Zasilanie 12V DC	Nr kat 527001	Nr kat 527004	Nr kat. 537005	Nr kat. 527002	Nr kat. 527003				
Zasilanie 24V DC	Nr kat. 527006	Nr kat. 527007	Nr kat. 527008	Nr kat. 527009	ZAM				
Zasilanie 48V DC	ZAM	ZAM	Nr kat. 527010	Nr kat. 527011	ZAM				
Moc znamionowa	300W	600W	1000W	2000W	3000W				
Moc chwilowa	600W	1200W	2000W	4000W	6000W				
Napięcie wyjściowe nomin.	230V AC, 50Hz ±5%								
Kształt przebiegu	Czysta sinusoida								
THD	<3%								
Sprawność	90%								
Port USB	5V 500mA								
Wymiary (szer x gł x wys) [mm]	113 x 217 x 57	170 x 266 x 78	170 x 320 x78	150 x 450 x 90	215 x 480x 94				
Masa netto	950g	1950g	2650g	5100g	6850g				

Modele z podanymi nr kat. - oferta stała. Pozostałe modele sprowadzamy na zamówienie. Prosimy o kontakt z działem sprzedaży.

Przykładowe oznaczenie modelu przetwornicy:

Nr kat. 527008 - moc 1000W – zasilanie 24V DC Oznaczenie: NV-P1000/24DC

9. Ochrona środowiska

Urządzenie podlega dyrektywie WEEE 2002/96/EC. Symbol obok oznacza, że produkt musi być utylizowany oddzielnie i powinien być dostarczany do odpowiedniego punktu zbierającego odpady. Nie należy go wyrzucać razem z odpadami gospodarstwa domowego. Aby uzyskać więcej informacji, należy skontaktować się z przedstawicielem przedsiębiorstwa lub lokalnymi władzami odpowiedzialnymi za zarządzanie odpadami.

MM:2016-01-19

PRZETWORNICE (INVERTERY) DC/AC z czystą sinusoida na wyjściu AC

Wyprodukowano w Chinach Importer: BIALL Sp. z o.o. ul. Barniewicka 54C 80-299 Gdańsk www.biall.com.pl

INSTRUKCJA OBSŁUGI

ARZ-5D Miernik mocy 3-fazowy do montażu na szynie DIN, z komunikacją RS-485/M-bus

I. Instrukcja obsługi miernika ARZ-5D	3
A. Wstęp	3
B. Charakterystyka miernika	4
1. Opis	4
2. Aplikacje	4
3. Opis funkcji miernika	5
4. Dokładność pomiarów	9
5. Specyfikacja techniczna	9
6. Ustawienia parametrów	11
7. Kompatybilność elektromagnetyczna (EMC) i standardy bezpieczeństwa	11
8. Schemat terminali	11
9. Rodzaje instalacji	12
10. Montaż	14
C. Interfeis użytkownika	14
1. Wprowadzenie do funkcji przycisków	14
2. Wprowadzenie do wyświetlania statusu	15
3. Tryb przewijania wyświetlanych parametrów	16
4. Trvb szybkich zapytań o parametry	16
4.1 Zapytanie o prad	17
4.2 Zapytanie o napiecie	17
4.3 Zapytanie o moc.	
4.4 Zapytanie o energie	18
5. Interfeis Menu	
5.1 Interfeis zapytań o energie	
5.2 Interfeis zapytań o harmoniczne	
5.3 Interfeis zapytań reiestracji danych	
5.4 Status portu I/O	26
5.5 Interfeis rejestru	27
5.6 Interfeis ustawień parametrów	30
5.7 Menu "About"	55
5.8 Ustawienia języka	55
II. Instrukcja obsługi oprogramowania	56
1. Funkcje oprogramowania	
2. Instalacja oprogramowania	56
3. Ustawienia ekranu operacyjnego	60
4. Opis interfejsów	61
III. Komunikacja	72
1. Protokół komunikacji	72
2. Format komend RTU i przykłady	72
3. Format danych	75
4. Rejestr parametrów systemowych	76
5. Rejestr wartości chwilowych z pomiarów elektrycznych	77
6. Rejestr harmonicznych	79
7. Rejestr energii	81
8. Rejestr ustawień wielotaryfowości	81
9. Rejestr energii taryfowej	84
10. Rejestr energii kwadrantowej	84
11. Rejestr parametrów IO	85
12. Rejestr parametrów alarmu	86
13. Rejestr ustawień zapotrzebowania i rejestracji	88
14. Rejestr parametrów "zamrożenia energii" i rejestracji	90
15. Rejestr parametrów krzywej obciążenia i rejestracji	93
16. Rejestr rejestru systemowego	96
17. Rejestr zdarzeń	97
18. Rejestr jakości energii	98
19. Rejestr czyszczenia danych	100
IV. Ochrona srodowiska	101

I. Instrukcja obsługi miernika ARZ-5D

A. Wstęp

Dziękujemy za zakup Wielofunkcyjnego miernika mocy ARZ-5D do montażu na szynie DIN.

Deklaracja

Niniejsza instrukcja obsługi dotyczy specyfikacji wyrobu w momencie jej publikacji. W instrukcji założono, że korzysta się ze standardowego oprogramowania. Istnieje możliwość zastosowania innych wersji oprogramowania, o czym użytkownik zostanie poinformowany.

Producent dołożył wszelkich starań, aby informacje zawarte w niniejszej instrukcji były kompletne i dokładne. Niemniej jednak producent nie ponosi odpowiedzialności za ewentualne braki lub pomyłki w instrukcji obsługi. Producent zastrzega sobie również prawo do wprowadzania zmian i ulepszeń produktu bez obowiązku zastosowania tych zmian w wyrobach uprzednio zakupionych.

Ważne informacje

ARZ-5D zachowuje swoją funkcjonalność pod następującymi warunkami:

1. Zasilanie: 85~265V AC/DC. Miernik może ulec uszkodzeniu lub jego funkcje nie będą działały prawidłowo przy napięciu zasilania poza określonym zakresem.

2. Pomiar parametrów: napięcie międzyfazowe (L-L) zakres 0~500V, napięcie fazowe (L-N) zakres 0~288V, zakres prądu 0~6A lub 0~80A. Miernik może ulec uszkodzeniu lub będzie działał nieprawidłowo po przekroczeniu tych zakresów.

3. Należy podłączyć miernik ściśle według odpowiedniego schematu zależnego od typu instalacji.

4. Temperatura pracy: -20°C~60°C. Miernik może ulec uszkodzeniu lub będzie działał nieprawidłowo przy przekroczeniu zakresu temperatury pracy.

Montaż, podłączenie i uruchomienie przyrządu może przeprowadzać jedynie wykwalifikowany elektryk.

Symbol oznacza, że istnieje potencjalne niebezpieczeństwo porażenia elektrycznego/lub zranień spowodowanych prądem elektrycznym, jeżeli nie będą przestrzegane zasady bezpieczeństwa przedstawione poniżej.

Symbol "Ostrożnie" oznacza, że istnieje potencjalne niebezpieczeństwo przy prowadzeniu danych czynności.

Ze względów bezpieczeństwa prosimy o właściwe korzystanie z przyrządu. Zaleca się przestrzeganie poniższych procedur:

1. Należy podłączać zasilanie i obciążenie zgodnie z wartościami podanymi na tabliczce znamionowej przyrządu.

2. W celu uniknięcia zagrożeń związanych ze złym podłączeniem należy upewnić się co do prawidłowego układu połączeń.

3. Należy wyłączyć zasilanie systemu przed przystąpieniem do konserwacji miernika.

4. Należy unikać pracy przyrządu z dużymi napięciami i dużymi prądami
B. Charakterystyka miernika

1. Opis

ARZ-5D jest trójfazowym miernikiem mocy i energii montowanym na szynie DIN, który znajduje zastosowanie w pomiarze, monitoringu i analizie instalacji elektrycznej. ARZ-5D mierzy i analizuje w czasie rzeczywistym ponad 60 parametrów takich, jak: napięcie, prąd, częstotliwość, moc i energię czynną, bierną, pozorną, współczynnik mocy cos φ (PF), harmoniczne prądu i napięcia i inne. Miernik posiada funkcję komunikacji przy pomocy portu RS-485 (protokół MODBUS) lub portu M-BUS (można wybrać tylko jeden port komunikacyjny), 4 programowalne porty I/O, które mogą być ustawione jako wyjście alarmowe, impulsowe, wejście źródła wielotaryfowości, wejście inspekcji statusu. Miernik rejestruje w tym samym czasie dane systemowe, zdarzenia oraz dane związane z jakością energii z możliwością ustawienia 25 kanałów danych alarmu, 50 kanałów danych zapotrzebowania, 50 kanałów danych "zamrożonej" energii, 16 kanałów danych krzywej obciążenia. ARZ-5D posiada matrycowy ekran LCD 128 x 64 punkty, na którym można wyświetlić kilka parametrów w jednym czasie.

Funkcja wielotaryfowości umożliwia podział roku na 12 stref czasowych, w ramach których można ustawić jeden z 8 harmonogramów. W 1 harmonogramie dzień (24h) może być podzielony na 12 odcinków czasu o minimalnym czasie trwania 15min. Każdy odcinek może zostać skonfigurowany jako "sum", "sharp", "peak", "flat", "valley". Miernik może odczytać i zapytać o parametry energii "sum", "sharp", "peak", "flat", "valley" z każdego dnia, tygodnia lub miesiąca oraz posiada funkcję "zamrożenia energii". Funkcja harmonicznych umożliwia analizę danych harmonicznych 2~63 rzędu dla sygnału wejściowego. Dane harmonicznych obejmują: zawartość harmonicznych napięcia i prądu, całkowity współczynnik zawartości harmonicznych, kąt fazowy, wartości prądów, napięć, mocy czynnej/biernej dla fundamentalnej składowej.

Urządzenie zostało zaprojektowane, wyprodukowane i przetestowane zgodnie z systemem kontroli jakości ISO 9001.

2. Aplikacje

Miernik ARZ-5D może być stosowany w instalacjach jednofazowych, 3P3W, 3P4W (włączając obciążenie niezrównoważone), głównie w obwodach wtórnych instalacji wysoko- i niskonapięciowych z zapewnieniem transmisji mierzonych parametrów.

w układach wtórnych w instalacji wysoko- i niskonapięciowej, jednofazowej, 3P3W, 3P4W (włączając obciążenie niezrównoważone).

3. Opis funkcji miernika

Funkcja	Opis	
Pomiar w	Napięcie fazowe	Napięcie fazowe
czasie rzeczywistym	Napięcie międzyfazowe	Napięcie międzyfazowe
	Prąd	Prąd fazowy, składowa zerowa
		prądu
	Moc czynna	Moc czynna fazowa, dla faz i
		całkowita
	Moc bierna	Moc bierna fazowa, dla faz i
		całkowita
	Moc pozorna	Moc bierna pozorna, dla faz i
		całkowita
	Moc 4-kwadrantowa	Moc 4-kwadrantowa
	Częstotliwość	Częstotliwość instalacji
	Współczynnik mocy	Współczynnik mocy fazowy,
		średni współczynnik mocy
Pomiar energii	Energia czynna	Energia czynna importowana/
		eksportowana/ netto dla faz i
		całkowita
	Energia bierna	Energia bierna
		importowana/eksportowana/
		netto dla faz i całkowita
	Energia pozorna	Energia fazowa pozorna.
		Energia pozorna dla faz i c
		ałkowita
	Energia wielotaryfowa	Całkowita energia czynna/
		bierna w stawkach taryf
		T1/T2/T3/T4
	Energia 4-kwadrantowa	Całkowita energia czynna/
		pozorna w 4 kwadrantach
		(Q1, Q2, Q3, Q4).
Porty wejścia	Programowalne porty I/O	4 programowalne porty I/O,
/wyjścia I/O		konfigurowane jako wejsciowe
		IUD Wyjsciowe. Port wejsciowy I/O
		moze byc zdefiniowany jako
		detekcie eveneku weićejewane
		Dert wyjściowy I/O może być
		Port wyjsciowy i/O moze byc
	Alorm	Waparojo dla may 25 kapalów
wyjscie alarmowe	Alann	funkciji olormu. No kożdym
		kanala maża być ustawiona inna
		wartość alarmowa paramotru a
		wartosc alarmowa parametru, a
		wyjscie alarmowe moze byc

		skonfigurowane na
		programowalnym porcie I/O.
		Istnieje możliwość
		skonfigurowania wielu wyiść
		alarmowych na jednym porcje
		wyjęciowym I/O Każdy port
		alarmount 1/0 ma funkcia
		Skoniigurowane mogą zostac
		max 4 porty wyjscia
		impulsowego. Kazdy impuls ma
		możliwość wyboru 4 źródeł
		impulsu oraz wyboru 1
		dostępnego portu I/O dla wyjścia.
		Dla 1 portu I/O można
		skonfigurować jedynie jedną
		funkcję wyjścia impulsowego.
Wielotaryfowość	Port I/O jako źródło	Porty wejściowe I/O1, I/O2 mogą
	ustawień taryfy	zostać skonfigurowane jako
		źródło ustawień taryfy. Taryfa jest
		kontrolowana przez poziom
		stanów. 2 porty I/O mają 4
		wysokie lub niskie wartości
		poziomu stanów, które
		odpowiadaja taryfom T1, T2, T3,
		T4.
	Kalendarz jako źródło	Wewnetrzny, systemowy
	ustawień taryfy	kalendarz może zostać
	, , , , , , , , , , , , , , , , , , , ,	skonfigurowany jako źródło
		ustawień taryfy. Wewnetrzny
		kalendarz jest definjowanym
		przez użytkownika kalendarzem
		tarví w którvm istnieje możliwość
		ustawienia 12 stref czasowych w
		roku o w kożdoj strofio ozosowoj
		ututkownik moto wybroć jodno z
		8 ram czasowych, aby zmierzyc
		energię tarytową. Ponadto
		mozna ustawic do 245
		specjainych okresów czasu/dni
		taryty.
	Oprogramowanie jako	Ustawienia taryfy są
	źródło ustawień taryfy	kontrolowane przez
		oprogramowanie PC. Bieżąco
		używana taryfa jest w całości
		kontrolowana przez oprogramow.

Detekcja statusu	Wejście statusu portu I/O	Porty I/O1, I/O2 mogą zostać skonfigurowane jako porty detekcji statusu. Zmiana statusu może zostać zasygnalizowana przy pomocy poziomu niskiego lub wysokiego. Detekcja statusu posiada funkcję zliczania statusów wejścia.
Rejestracja	Rejestr systemowy	Rejestrowanie nietypowych zdarzeń systemowych, np. wykrywanie sprzętu, włączanie/wyłączanie, modyfikacja rejestru itd. Możliwość zarejestrowania do 500 rekordów.
	Rejestr zdarzeń	Rejestrowaniealarmówzwiązanych ze zdarzeniami orazalarmukonfiguracji.zdarzeńjestpowiązanyzezdarzeniemalarmowym.Możliwośćzarejestrowania500 rekordów.
	Rejestr jakości energii	Rejestrowanienietypowychzdarzeń związanych z jakościąenergii.Rejestr jakości energiijest powiązany ze zdarzeniemalarmowym.Możliwośćzarejestrowaniado 500rekordów.
Rejestr zapotrzebowania	Kalkulacja zapotrzebowania i przechowywanie danych	Max 50 kanałów kalkulacji i zapisu danych zapotrzebowania. W każdym kanale może znaleźć się do 200 danych zapotrzebowania. W każdym kanale zapotrzebowania można zapisać inne parametry.
Zapis "zamrożenia" energii	Regularny zapis danych energii	Max 50 kanałów "zamrożenia" rejestru energii. W każdym kanale może znaleźć się do 200 danych. W każdym kanale "zamrożenia" rejestru można zapisać inne parametry.
Rejestr krzywej obciążenia		Rejestr krzywej obciążenia to funkcja umożliwiająca nakreślenie krzywej danych na

		podstawie dużej ilości
		przechowywanych danych.
		Nakreślenie krzywej danych
		wymaga wsparcia ze strony
		komputera PC. Można
		wykorzystać max 16 kanałów
		rejestru krzywej obciażenia, a w
		każdym z nich zapisanych
		może zostać do 2000 danych
		dla wykresu.
Analiza	Zawartość harmonicznych	Zawartość harmonicznych
harmonicznych	napięcia	napięcia 2~63 rzędu w każdej
		fazie
	Zawartość harmonicznych	Zawartość harmonicznych prądu
	prądu	2~63 rzędu w każdej fazie
	Kąt fazowy harmonicznych	Kąt fazowy harmonicznych
	napięcia	napięcia 2~63 rzędu w każdej
		fazie
	Kąt fazowy harmonicznych	Kąt fazowy harmonicznych prądu
	prądu	2~63 rzędu w każdej fazie
	Całkowity współczynnik	Całkowity współczynnik
	zawartości harmonicznych	zawartości harmonicznych
	napięcia (U-THD)	napięcia dla każdej fazy
	Całkowity współczynnik	Całkowity współczynnik
	zawartości harmonicznych	zawartości harmonicznych prądu
	prądu (I-THD)	dla każdej fazy
	Dla fundamentalnej	Wartości prądów, napięć, mocy,
	składowej	energii w każdej fazie, dla
		fundamentalnej składowej
Komunikacja	Port RS-485	1 kanał - protokół Modbus RTU,
		port komunikacyjny
		współdzielony z M-BUS
	Port M-bus	1 kanał – protokół Mbus, port
		komunikacyjny współdzielony z
		RS-485
Wyświetlanie czasu	Zegar	Rok, miesiąc, dzień, godzina,
		minuta, sekunda
Język	Chiński	
	Angielski	

4. Dokładność pomiarów

Parametr	Wyświetlanie	Kierunkowość	Dokładność	
Napięcie	0~9999kV		Klasa 0,5 z	zakres:
			5%~100%V	
Prąd	0~9999kA		Klasa 0,5 z	zakres:
			5%~100%A	
			Składowa zerowa	prądu
			Klasa 1,0	
Współczynnik	1,000	-1~+1	Klasa 1,0	
mocy				
Częstotliwość	45~65Hz		±0,01Hz	
Moc czynna	-9999~9999MW	+/- Imp/exp	Klasa 0,5	
Moc bierna	-9999~9999MVA	+/- Indukc./pojem.	Klasa 0,5	
Moc pozorna	0~9999MVA	Imp/exp/netto	Klasa 0,5	
Energia	0~9999999,99M	+/- Imp/exp/netto	Klasa 0,5 lub 1,0	
czynna				
Energia bierna	0~9999999,99M	+/- Indukc./pojem.	Klasa 1,0 lub 2,0	
Energia	0~9999999,99M	Imp/exp/netto	Klasa 2,0	
pozorna				

5. Specyfikacja techniczna

Prąd wejściowy			
Prąd znamionowy	5A lub 80A		
Mierzony zakres	0,5%~120% wartości znamionowej		
Zakres przeciążenia	2x prąd znamionowy w sposób ciągły, 100A/1s incydentalnie		
Pobór mocy	≤0,2VA na fazę		
Napięcie wejściowe			
Zakres	288VAC (napięcie fazowe), 500VAC (napięcie		
	międzyfazowe)		
Częstotliwość	45~65Hz		
systemu			
Mierzony zakres	3%~120%		
Zakres przeciążenia	2x prąd znamionowy w sposób ciągły, 2500V/1s		
	incydentalnie		
Pobór mocy	≤0,5VA na fazę		
Programowalny port I/O			
Kanały	2 kanały wejściowe, 2 kanały wyjściowe (domyślnie)		
wejściowe/wyjściowe			
Typ wejścia	0~24VDC		
Typ wyjścia	Beznapięciowe		
Izolacja napięcia	>2500VAC		
Wyjścia alarmowe			
Kanały wyjściowe	2 kanały wyjścia alarmowego (domyślnie) lub		
	indywidualnie ustawione		
Typ wyjścia	Pasywne opto-złącze – może być skonfigurowane jako		

	alarm, normalnie zwarte lub rozwarte		
Zdolność łączeniowa	50mA/24VDC		
Wyjścia impulsowe l	/0		
llość wyjść	2 kanały wyjścia alarmowego (domyślnie) lub indywid		
	ustawiane		
Typ wyjścia	Pasywne opto-złącze – parametry nośnika impulsów moga		
	konfigurowane		
Częstotliwość	1~9999imp/jednostkę parametru nośnika		
impulsów			
Szerokość impulsu	10~990ms		
Wyjście impulsowe	LED		
llość wyjść	1 kanałowe wyjście impulsowe LED wskazujące całkowitą		
	energię czynną wejściową/wyjściową		
Częstotliwość	400imp/kWh		
impulsów			
Szerokość impulsu	40ms		
Szeregowy port kom	unikacyjny (wybór jednego portu komunikacyjnego)		
llość wyjść	1 port RS-485 lub 1 port M-BUS (współdzielony)		
Protokół	Protokół Modbus-RTU lub protokół M-BUS		
komunikacji			
Szybkość transmisji	1200/2400/4800/9600/19200 bps		
Inne parametry			
Zasilanie	85~265VAC/DC (brak polaryzacji przy zasilaniu DC)		
Moduł wyświetlacza	Podświetlany LCD matrycowy 128 x 64 punkty		
Współczynnik	<100PPM/°C		
temperaturowy			
Wytrzymałość	2500V/1min		
elektryczna			
(wejście/wyjście)			
Całkowity pobór	<8VA		
тосу			
Temperatura pracy	-20°C~60°C		
Temperatura	-40°C~85°C		
przechowywania			
Wilgotność pracy	5~95% RH (bez kondensacji)		
Stopień	Klasa 2		
zanieczyszczenia			
Obudowa	Odporność na zapalenie zg. z UL94V0		
Ochronność	IP30		
obudowy			
Wymiary	126 x 74 x 89mm (szer x gł x wys)		
Masa	320g		

6. Ustawienia parametrów

Parametry, które można modyfikować to: czas, rodzaj instalacji, przekładnia, taryfa, adres do komunikacji, szybkość transmisji, tryb przechowywania danych, impuls, alarm, status, rejestr zapotrzebowania, zapis "zamrożenia" energii, krzywa obciążenia, resetowanie danych, hasło użytkownika, itd.

Powyższe parametry mogą być modyfikowane z poziomu miernika lub przy pomocy oprogramowania.

7. Kompatybilność elektromagnetyczna (EMC) i standardy bezpieczeństwa

- •IEC61000-4-2
- •IEC61000-4-8
- •IEC61000-4-4
- •IEC61000-1

8. Schemat terminali

Rys.1

1		LN		LN*		8
	9	B-		Ν	20	
	10	A+		L	19	
2		L3	_	L3*		7
	11	COM4	- 2	I/O1	18	
	12	I/O4	2	COM1	17	
3		L2	A	L2*		6
	13	COM3		I/O2	16	
	14	I/O3		COM2	15	
4		L1		L1*		5

Opis terminali

Nr	Opis	
terminalu	_	
1	LN	Terminale wyjściowe prądowe faz L1, L2, L3 i przewodu N
2	L3	Terminale wyjściowe napięciowe faz L1, L2, L3 i przewodu
3	L2	neutralnego N
4	L1	
5	L1*	Terminale wejściowe prądowe faz L1, L2, L3 i przewodu N
6	L2*	Terminale wejściowe napięciowe faz L1, L2, L3 i przewodu
7	L3*	neutralnego N
8	LN*	
9	B-	Współdzielony port komunikacyjny RS485 lub M-Bus
10	A+	
11	COM4	Nr 4 Programowalny port I/O, domyślnie jako wyjściowy
12	I/O4	
13	COM3	Nr 3 Programowalny port I/O, domyślnie jako wyjściowy
14	I/O3	

15	COM2	Nr 2 Programowalny port I/O, domyślnie jako wejściowy
16	I/O2	
17	COM1	Nr1 Programowalny port I/O, domyślnie jako wejściowy
18	I/O1	
19	L	Terminale wejściowe zasilania miernika (85~265VAC/DC)
20	Ν	

9. Rodzaje instalacji

Rys.2 Schemat instalacji 3P4W (pomiar bezpośredni prądu do 80A)

Rys. 3 Schemat instalacji 3P4W z przekładniami CT i VT

Zaleca się uziemienie wyprowadzeń uzwojeń wtórnych przekładników CT i początków uzwojeń wtórnych wyjść przekładnika 3 fazowego (podłączonych do terminala LN*).

Rys. 4 Schemat instalacji 3P3W (pomiar bezpośredni do 80A)

Rys. 5 Schemat instalacji 3P3W z przekładniami CT i VT

Zaleca się uziemienie wyprowadzeń S2 uzwojeń wtórnych przekładników prądowych.

Rys. 6 Schemat instalacji jednofazowej

10. Montaż

- 1. Wymiary: 126 x 74 x 89mm (szer x gł x wys.)
- 2. Sposób montażu: na standardowej szynie DIN 35mm

W pierwszej kolejności zamocować szynę na ścianie szafy rozdzielczej, a następnie zaczepić tylną stronę miernika do szyny.

C. Interfejs użytkownika

1. Wprowadzenie do funkcji przycisków

ARZ-5D wyposażony jest w 5 przycisków, jak na poniższym rysunku:

Poszczególne przyciski mają następujące funkcje:

Przycisk	Interfejs wywoływania parametrów, Interfejs przewijania ekranu	Tryb SET UP (ustawianie parametrów)
I EXIT	Skrót do zapytań dotyczących prądu: szybkie włączanie ekranu wyświetlania parametrów prądu.	Powrót do poprzedniego menu.
U	Skrót do zapytań dotyczących napięcia: szybkie włączanie ekranu wyświetlania parametrów napięcia.	Przejście do góry: przełączenie do poprzedniego menu lub zwiększenie wpisywanej wartości.
P Down	Skrót do zapytań dotyczących mocy: szybkie włączanie ekranu wyświetlania parametrów mocy.	Przejście w dół: przełączenie do poprzedniego menu lub zmniejszenie wpisywanej wartości.

Е ок	Skrót do zapytań dotyczących energii: szybkie włączanie ekranu wyświetlania parametrów energii.	Przycisk [OK], potwierdzenie przejścia do następnego menu lub potwierdzenie aktualnie wpisanej wartości.
M SET Dłuższe wciśnięcie (>3s)	Przycisk wyboru trybu: przytrzymać przez min 3s, aby przejść do menu.	Przycisk wyboru trybu: przytrzymać przez 3s, aby przejść do interfejsu przewijania ekranu.
M SET Chwilowe wciśnięcie	Wywołanie przejścia z ekranu przewijania do ekranu zapytań	Przesunięcie kursora o 1 wartość do tyłu, do modyfikacji danych numerycznych.
I + U Jednoczesne wciśnięcie	Przycisk blokowania/odblokowywania: po zablokowaniu dane na przewijanym ekranie zostaną "zamrożone". Przejście z interfejsu zapytań do przewijanego ekranu nie nastąpi automatycznie. W tym celu należy wcisnąć przycisk [M]. Po odblokowaniu wróci możliwość przełączania.	Brak funkcji
I + P Jednoczesne wciśnięcie	Brak funkcji	Przycisk resetowania: aktywny tylko w menu ustawień. W celu zresetowania danych, konieczne jest wpisanie hasła. Po potwierdzeniu z miernika zostaną usunięte wszystkie dane systemu. Nie będzie możliwości przywrócenia danych po ich usunięciu.

Uwaga:

Przytrzymanie przycisku [M] (przez co najmniej 3s) powoduje przełączenie między interfejsami zapytań, przewijania ekranu i menu.

Po wciśnięciu któregokolwiek z przycisków włączy się podświetlenie ekranu, które wyłączy się po 30s bezczynności.

2. Wprowadzenie do wyświetlania statusu

lkony statusu wyświetlają się w górnej części ekranu. Informacje na temat statusu obejmują: kwadrant mocy, rodzaj instalacji, ikona zablokowania ekranu, czas.

Ikona statusu	Opis
	Kwadranty mocy (I, III – indukcyjny, II, IV – pojemnościowy)
\sim	Rodzaj instalacji (3P4W, 3P3W, 1P2W)
T1, T2, T3, T4	Wielotaryfowość
0	Status zablokowania: ikona wyświetla się gdy ekra zablokowany, znika po odblokowaniu
Czas systemowy	Wyświetlanie czasu systemowego

3. Tryb przewijania wyświetlanych parametrów

Gdy miernik podłączony jest do zasilania, automatycznie przechodzi on do trybu przewijania parametrów. Tryb przewijania parametrów posiada 6 interfejsów, przełączanych co 3s. Główne parametry wyświetlane w trybie przewijania to: napięcie międzyfazowe, napięcie fazowe, prąd fazowy, całkowita energia, parametry statusu systemu (jak na poniższych rysunkach – od lewej do prawej, z góry na dół).

Sposób wyświetlania w interfejsie przewijania: w pierwszym wierszu wyświetlane są ikony statusu systemu (kwadrant mocy, rodzaj instalacji, numer taryfy, ikona zablokowania ekranu, czas systemowy), w drugim wierszu wyświetlana jest wartość napięcia międzyfazowego i fazowego, w trzecim wierszu wyświetlana jest wartość prądu fazowego a w wierszu czwartym wyświetlana jest całkowita wartość energii (całkowita energia czynna, całkowita energia bierna, całkowita energia pozorna). W czasie gdy ekran nie jest zablokowany, 6 powyższych interfejsów będzie wyświetlało się cyklicznie co 3s. W trybie zablokowania ekranu, ekrany interfejsów nie będą się zmieniać i wyświetlany będzie tylko bieżący interfejs.

W trybie przewijania wciśnięcie jednego z przycisków skrótu [I, U, P, E] spowoduje przejście do interfejsu zapytań, natomiast przytrzymanie przycisku [M] przez co najmniej 3s spowoduje przejście do menu.

4. Tryb szybkich zapytań o parametry

W interfejsie szybkich zapytań o parametry stosuje się 4 przyciski [I, U, P, E]. W trybie przewijania lub w trybie zapytań nacisnąć jeden z przycisków, aby przejść do odpowiadającego mu interfejsu zapytań.

4.1 Zapytanie o prąd

W trybie przewijania lub w trybie zapytań nacisnąć przycisk [I], aby przejść do interfejsu, jak na poniższym rysunku:

Do wyświetlenia danych na temat prądu służą dwa ekrany. Przełącza się je za pomocą przycisku [I] Na ekranach wartości prądu wyświetlają się: Prąd fazowy przewodu L1 (I1), Prąd fazowy przewodu L2 (I2), Prąd fazowy przewodu L3 (I3), Prąd przewodu neutralnego (N).

4.2 Zapytanie o napięcie

W trybie przewijania lub w trybie zapytań nacisnąć przycisk [U], aby przejść do interfejsu, jak na poniższym rysunku:

Vo]	ltage 🛆		Volt	age		FREQ		
U1	220.0	V	U12	380.0	V	_	50.0	
U2	220.0	V	U23	380.0	V	F	50.0	HZ
U3	220.0	V	U13	380.0	V			
I	U P E	M उश	I	U P E	N SP7	I U	P E	M STT

Do wyświetlania danych na temat napięcia służą 3 ekrany. Przełącza się je za pomocą przycisku [U]. Na ekranach wartości napięcia wyświetlają się się: Napięcie fazowe L1 (U1), Napięcie fazowe L2 (U2), Napięcie fazowe L3 (U3), Napięcie międzyfazowe L12 (U12), Napięcie międzyfazowe L23 (U23), Napięcie międzyfazowe L13 (U13) oraz częstotliwość fundamentalna systemu (F).

4.3 Zapytanie o moc

W trybie przewijania lub w trybie zapytań nacisnąć przycisk [P], aby przejść do interfejsu. Do wyświetlania danych na temat mocy służy 8 ekranów. Przełącza się je za pomocą przycisku [P]. Na ekranach wartości mocy wyświetlają się: Moc czynna fazy L1, Moc czynna fazy L2, Moc czynna fazy L3, Całkowita moc czynna, Moc bierna fazy L1, Moc bierna fazy L2, Moc bierna fazy L3, Całkowita moc bierna, Moc pozorna fazy L1, Moc pozorna fazy L2, Moc pozorna fazy L3, Całkowita moc pozorna, Współczynnik mocy fazy L1, Współczynnik mocy fazy L2, Współczynnik mocy fazy L3, Całkowita mocy fazy L3, Całkowity współczynnik mocy fazy L3, Całkowita mocy fazy L3, Całkowita mocy fazy L3, Całkowity współczynnik mocy fazy L3, Całkowita mocy fazy L3, Całkowita mocy fazy L3, Całkowity współczynnik mocy fazy L3, Całkowita mocy fazy L3, Całko

4.4 Zapytanie o energię

W trybie przewijania lub w trybie zapytań nacisnąć przycisk [E], aby przejść do interfejsu, jak na poniższym rysunku.

IMP	TOT	EXP TO	T	NET	TOT	APP	
Ep	0.00 kWh	E _p (0.00 kWh	Ep	0.00 kWh	Eq	0.00 kVAh
Eq	0.00kvarh	Eq (0. OOkvarh	Eq	0.00kvarh		

Do wyświetlania danych dotyczących energii służą 4 ekrany. Przełącza się je za pomocą przycisku [E]. Na pierwszym ekranie wyświetlana jest wartość energii importowanej (IMP TOT), na drugim, wartość energii eksportowanej (EXP TOT), na trzecim, wartość energii netto (NET TOT) oraz na czwartym, wartość całkowitej energii pozornej (APP). Wyświetlane są następujące dane: całkowita importowana energia czynna, całkowita importowana energia bierna, całkowita eksportowana energia czynna, całkowita energia bierna netto i całkowita energia pozorna.

Uwaga:

W czasie gdy ekran nie jest zablokowany, po przejściu do trybu szybkich zapytań nastąpi powrót do trybu przewijania, gdy w ciągu 30s nie zostanie wykonana żadna operacja. W czasie, gdy ekran jest zablokowany nie nastąpi automatyczne przejście do trybu przewijania. W tym wypadku należy nacisnąć przycisk [M]. W trybie zapytań należy przytrzymać przycisk [M] przez co najmniej 3s, aby przejść do Menu.

5. Interfejs Menu

Tryb Menu jest używany do sprawdzenia szczegółów dotyczących parametrów, rejestracji danych, informacji o systemie oraz konfiguracji parametrów systemu. W menu znajdują się następujące podmenu:

Menu główne	Podmenu	Opis
	Całkowita (Total)	Całkowita energia importowana, całkowita energia eksportowana, całkowita energia netto.
	Fazowa	Importowana, eksportowana, i netto
Energia	(Phase)	dla każdej fazy.
(Energy)	^{/)} Wielotaryfowa (Tariff)	Importowana/eksportowana całkowita czynna, bierna energia w stawkach taryf T1, T2, T3, T4.
	4-Kwadrantowa	Całkowita energia czynna, całkowita
	(Quadrant)	energia bierna Q1, QA, Q3, Q4.
Harmoniczne (Harmonic)	U-THD	Całkowity współczynnik zawartości harmonicznych napięcia parzystych i nieparzystych dla każdej fazy.
	U-HAR	Harmoniczne napięcia (do 63) dla

		każdej fazy z podaniem kąta fazowego dla każdej harmonicznej.
	I-THD	Całkowity współczynnik zawartości harmonicznych prądu parzystych i nieparzystych dla każdej fazy.
	I-HAR	Harmoniczne prądu (do 63) dla każdej fazy z podaniem kąta fazowego dla każdej harmonicznej.
	Dla fundamentalnej składowej (Fund)	Wartości prądów, napięć, mocy, energii dla fundamentalnej składowej
	Zapotrzebowanie mocy (Demand)	Możliwość sprawdzenia maksymalnie 50 kanałów zapisanych danych. Każdy kanał mieści 200 rekordów zapotrzebowania mocy.
Pamięć (Store)	Profil obciążenia (Load profile)	Możliwość sprawdzenia maksymalnie 16 kanałów zapisanych danych. Każdy kanał mieści 2000 rekordów.
	Poprzednia wartość energii (Wartość zamrożonej energii)	Możliwość sprawdzenia maksymalnie 50 kanałów zapisanych danych. Każdy kanał mieści 200 rekordów.
	I/O1	Port I/O1 i jego status
Porty wejścia/	I/O2	Port I/O2 i jego status
wyjścia I/O	I/O3	Port I/O3 i jego status
	I/O4	Poty I/O4 i jego status
	System	Rejestracja zdarzeń systemowych obejmuje głównie błędy sprzętowe, włączanie miernika, zmiany ustawień itp. Istnieje możliwość sprawdzenia do 500 rekordów.
Rejestracja (Log)	Zdarzenia (Event)	Rejestracja względnego alarmu zdarzeń oraz alarmu konfiguracji. Istnieje możliwość sprawdzenia do 500 rekordów.
	Jakość (Quality)	Rejestracja zdarzeń alarmowych dotyczących błędów związanych z jakością energii. Istnieje możliwość sprawdzenia do 500 rekordów.
Ustawienia (Set)	Systemowe (System)	Ustawienia czasu systemowego, rodzaju instalacji, przekładni, stawki taryfy, komunikacji i trybu

		1	
		zapisywania danych.	
		Konfiguracja	wyjścia
	1/0	impulsowego,	wyjścia
	1/0	alarmowego, inspekcji	statusu
		detekcji sygnału wejściow	ego.
		Wyczyszczenie	danych
		dotyczących	energii,
	Reset	zarejestrowanych	danych,
		licznika portów I/O i ws	zystkich
		innych danych	
		Ustawienia zapisu w	pamięci
	Pamięć	zapotrzebowania mocy,	krzywej
	(Store)	obciążenia i danych doty	czących
		energii	
	Hasło	Ustawienie hasła użytko	ownika i
	(Password)	hasła administratora	
	Wersja sprzętu		
	(Hardware version)		
	Czas i godzina		
Informacje	(Date and time)		
(About)	Całkowity czas działania		
	miernika		
	(Meter total running time)		
	Chiński		
Język	(中文)		
(Language)	Angielski		
	(English)		

W interfejsie przewijania lub interfejsie zapytań przytrzymać przycisk [M] przez 3s, aby przejść do interfejsu menu, jak na poniższym rysunku.

Energy	Harmonic
Store	I/0
Log	Set
About	Language

5.1 Interfejs zapytań o energię

Po przejściu do Menu naciskać [UP] lub [DOWN], aby przemieścić kursor. Wybrać [Energy] z menu głównego i nacisnąć [OK], aby przejść do podmenu, jak na poniższym rysunku:

Dane dotyczące energii obejmują: energię całkowitą, energię dla poszczególnych faz, energię dla poszczególnych taryf, energię kwadrantową.

5.1.1

Wybór zapytania [Total] wywoła 4 kolejne podinterfejsy z następującymi parametrami:

1/4	Całkowita energia czynna importowana/Całkowita energia bierna importowana
2/4	Całkowita energia czynna eksportowana/ Całkowita energia bierna importowana
3/4	Całkowita energia czynna netto/Całkowita energia bierna netto
4/4	Całkowita energia pozorna

5.1.2

Wybór zapytania [Phase] wywoła 7 kolejnych podinterfejsów z następującymi parametrami:

1/7	Czynna energia importowana dla fazy L1, Czynna energia importowana dla fazy
	L2, Czynna energia importowana dla fazy L3
2/7	Bierna energia importowana dla fazy L1, Bierna energia importowana dla fazy L2,
	Bierna energia importowana dla fazy L3
3/7	Czynna energia eksportowana dla fazy L1, Czynna energia eksportowana dla fazy
	L2, Czynna energia importowana dla fazy L3
4/7	Bierna energia eksportowana dla fazy L1, Bierna energia eksportowana dla fazy
	L2, Bierna energia eksportowana dla fazy L3
5/7	Czynna energia netto dla fazy L1, Czynna energia netto dla fazy L2, Czynna
	energia eksportowana netto dla fazy L3
6/7	Bierna energia netto dla fazy L1, Bierna energia netto dla fazy L2, Bierna energia
	netto dla fazy L3
7/7	Pozorna energia dla fazy L1, Pozorna energia dla fazy L2, Pozorna energia dla
	fazy L3

5.1.3

Wybór zapytania [Tariff] wywoła 8 kolejnych podinterfejsów z następującymi parametrami:

1/8	Całkowita czynna energia importowana taryfy 1,Całkowita czynna energia
	importowana taryfy 2, Całkowita czynna energia importowana taryfy 3
2/8	Całkowita czynna energia importowana taryfy 4
3/8	Całkowita czynna energia eksportowana taryfy 1, Całkowita czynna energia
	eksportowana taryfy 2, Całkowita czynna energia eksportowana taryfy 3
4/8	Całkowita czynna energia eksportowana taryfy 4
5/8	Całkowita bierna energia importowana taryfy 1, Całkowita bierna energia

	importowana taryfy 2, Całkowita bierna energia importowana taryfy 3				
6/8	Całkowita bierna energia importowana taryfy 4				
7/8	Całkowita bierna energia eksportowana taryfy 1, Całkowita bierna energia				
	eksportowana taryfy 2, Całkowita bierna energia eksportowana taryfy 3				
8/8	Całkowita bierna energia eksportowana taryfy 4				

5.1.4

Wybór zapytania [Quadrant] wywoła 4 kolejne podinterfejsy z następującymi parametrami:

1/4	Energia kwadrantowa czynna Q1, Energia kwadrantowa bierna Q1
2/4	Energia kwadrantowa czynna Q2, Energia kwadrantowa bierna Q2
3/4	Energia kwadrantowa czynna Q3, Energia kwadrantowa bierna Q3
4/4	Energia kwadrantowa czynna Q4, Energia kwadrantowa bierna Q4

Sposób wyświetlania wartości energii:

W pierwszym wierszu powyższego interfejsu wyświetlane jest oznaczenie parametru i numer strony. Skrót "NRG TOT IMP" oznacza: "Energia całkowita importowana". "1/4" oznacza, że użytkownik jest na stronie 1 z 4. W trzecim i czwartym wierszu wyświetlane są wartości całkowitej energii czynnej i całkowitej energii biernej. Interfejsy odnoszące się do innych parametrów są analogiczne.

5.2 Interfejs zapytań o harmoniczne

Po przejściu do Menu naciskać [UP] lub [DOWN] aby przemieścić kursor. Wybrać [Harmonic] w menu oraz nacisnąć [OK], aby przejść do podmenu, jak na poniższym rysunku:

Harmonic	
U THD	U HAR
I THD	I HAR
Fund	

Dane dotyczące harmonicznych obejmują Całkowity współczynnik zawartości harmonicznych napięcia (U THD), Całkowity współczynnik zawartości harmonicznych prądu (I THD), Harmoniczne napięcia (U HAR), Harmoniczne prądu (I HAR), Harmoniczne dla fundamentalnej składowej (Fund).

5.2.1

Podmenu "U THD" zawiera 6 interfejsów: Fazy L1, L2, L3 Całkowity współczynnik zawartości harmonicznych napięcia dla fundamentalnej składowej (U THD_F); Fazy L1, L2, L3 Współczynnik zawartości harmonicznych nieparzystych (ODD) dla fundamentalnej składowej (U OHD_F); Fazy L1, L2, L3 Współczynnik zawartości harmonicznych parzystych (EVEN) dla fundamentalnej składowej (U EHD_F); Fazy L1, L2, L3 Całkowity współczynnik zawartości harmonicznych napięcia dla wartości skutecznych RMS (U THD_R); Fazy L1, L2, L3 Współczynnik zawartości harmonicznych napięcia dla wartości skutecznych RMS (U_OHD_F); Fazy L1, L2, L3 Współczynnik zawartości harmonicznych napięcia dla wartości skutecznych RMS (U_OHD_F); Fazy L1, L2, L3 Współczynnik zawartości harmonicznych napięcia dla wartości skutecznych RMS (U_EHD_R).

U THD_F	1/6	U OHD F	2/6
L1	0.00%	L ₁	0.00%
L ₂	0.00%	L ₂	0.00%
L3	0.00%	L3	0.00%
U EHD_F	3/6	U THD R	4/6
L1	0.00%	Lı	0.00%
L ₂	0.00%	L ₂	0.00%
L ₃	0.00%	L3	0.00%
U OHD R	5/6	U EHD_R	6/6
L ₁	0.00%	L1	0.00%
L ₂	0.00%	L ₂	0.00%
L ₃	0.00%	L3	0.00%

Sposób wyświetlenia zniekształcenia harmonicznych.

W pierwszym wierszu wyświetlane jest oznaczanie parametru i numer strony.

W drugim wierszu wyświetlany jest współczynnik zawartości harmonicznych napięcia dla fazy L1.

W trzecim wierszu wyświetlany jest współczynnik zawartości harmonicznych napięcia dla fazy L2.

W czwartym wierszu wyświetlany jest współczynnik zawartości harmonicznych napięcia dla fazy L3.

5.2.2

Podmenu [I-THD] zawiera 6 podinterfejsów: Fazy L1, L2, L3 Całkowity współczynnik zawartości harmonicznych prądu dla fundamentalnej składowej; Fazy L1, L2, L3 Całkowity współczynnik zawartości harmonicznych nieparzystych (ODD) prądu dla fundamentalnej składowej; Fazy L1, L2, L3 Współczynnik zawartości harmonicznych parzystych (EVEN) dla fundamentalnej składowej, Fazy L1, L2, L3 Całkowity współczynnik zawartości harmonicznych prądu dla wartości skutecznych RMS; Fazy L1, L2, L3 Współczynnik zawartości skutecznych RMS; Fazy L1, L2, RMS; Fazy L1, L2, L3 Współczynnik zawartości skutecznych parzystych prądu dla wartości skutecznych RMS; Fazy L1, L2, L3 Współczynnik zawartości skutecznych parzystych prądu dla wartości skutecznych RMS; Fazy L1, L2, L3 Współczynnik zawartości skutecznych parzystych prądu dla wartości skutecznych RMS;

5.2.3

Podmenu [U HAR] zawiera 62 interfejsy, w których wyświetlana jest każda harmoniczna napięcia od 2 do 63 rzędu. Każdy interfejs wyświetla zawartość harmonicznych w fazach L1, L2 i L3 oraz ich kąt fazowy.

U 02	02 1/63			
L_1	1.22%	52.6°		
L2	2.54%	32.8°		
L3	2.34%	62.4°		

Na powyższym rysunku przedstawiony jest zapis harmonicznej drugiego rzędu i kąt fazowy faz L1, L2 i L3. W pierwszym rzędzie wyświetlony jest rząd harmonicznej i numer strony, gdzie [U] oznacza harmoniczną napięcia a [02] oznacza, że obserwujemy harmoniczną 2 rzędu.

W drugim wierszu wyświetlona jest zawartość harmonicznej dla fazy L1 oraz kąt fazowy W trzecim wierszu wyświetlona jest zawartość harmonicznej dla fazy L2 oraz kąt fazowy W czwartym wierszu wyświetlona jest zawartość harmonicznej dla fazy L3 oraz kąt fazowy

5.2.4

Podmenu [I HAR] zawiera 62 interfejsy, w których wyświetlana jest każda harmoniczna prądu od 2 do 63 rzędu. Każdy interfejs wyświetla zawartość harmonicznych w fazach L1, L2 i L3 oraz ich kąt fazowy. Sposób wyświetlania harmonicznych prądu jest analogiczny do wyświetlania harmonicznych napięcia.

5.2.5

Menu fundamentalnej składowej [Fund] zawiera 5 interfejsów, które pokazują: zawartość fundamentalnej składowej napięcia dla każdej fazy i kąt fazowy fundamentalnej składowej napięcia, zawartość fundamentalnej składowej prądu i kąt fazowy fundamentalnej składowej prądu, moc czynną fundamentalnej składowej, moc bierną fundamentalnej składowej, moc pozorną fundamentalnej składowej. W poszczególnych interfejsach zawarte są następujące parametry:

1/5	Zawartość	fundamentalnej	składowej	napięcia	dla	fazy	L1/L2/L3,	kąt	fazowy
	fundamenta	alnej składowej, ca	ałkowita iloś	ć danych:	: 6				
2/5	Zawartość	fundamentalnej	składowej	prądu	dla	fazy	L1/L2/L3,	kąt	fazowy

	fundamentalnej składowej, całkowita ilość danych:6
3/5	Moc czynna fundamentalnej składowej fazy L1, Mocy czynna fundamentalnej
	składowej fazy L2, Moc czynna fundamentalnej składowej fazy L3
4/5	Moc bierna fundamentalnej składowej fazy L1, Moc bierna fundamentalnej składowej
	fazy L2, Moc bierna fundamentalnej składowej fazy L3
5/5	Moc pozorna fundamentalnej składowej fazy L1, Moc pozorna fundamentalnej
	składowej fazy L2, Moc bierna fundamentalnej składowej fazy L3

5.3 Interfejs zapytań rejestracji danych

Po przejściu do Menu naciskać przyciski [UP] lub [DOWN], aby przemieścić kursor. Wybrać [Store] w menu głównym, a następnie nacisnąć [OK], aby przejść do podmenu, jak na poniższym rysunku.

Interfejs zapytań rejestracji danych obejmuje rejestrację zapotrzebowania mocy (Demand), rejestrację krzywej obciążenia (Load Profile), rejestrację parametrów energii (Pre Value).

5.3.1

W menu [Demand] użytkownik może sprawdzić zarejestrowaną wartość prognozowaną zapotrzebowania mocy dla różnych parametrów na każdym kanale. Miernik obsługuje do 50 kanałów, w każdym z nich można zapisać do 200 rekordów. Przykładowy ekran interfejsu prognozowanego zapotrzebowania mocy przedstawiony jest na poniższym rysunku.

Opis interfejsu:

W pierwszym wierszu znajduje się nazwa parametru rejestrowanego aktualnie przez kanał zapotrzebowania mocy (ACT POWER TOT). W drugim wierszu umieszczony jest aktualny numer kanału i numer rekordu zapotrzebowania mocy na tym kanale (CH:01). Numery kanału i rekordu mogą być modyfikowane za pomocą przycisków [UP] i [DOWN]. Za pomocą przycisku [M] można przemieścić cyfrowy kursor. Po modyfikacji numeru kanału i rekordu wyświetlenie rekordu zapotrzebowania mocy zostanie odświeżone. Oznaczenie "CH" odnosi się do numeru kanału, "T" natomiast do numeru rekordu zarejestrowanego w tym kanale.

W trzecim wierszu wyświetlona jest data i czas aktualnego rekordu zapotrzebowania mocy.

W czwartym wierszu wyświetlona jest wartość zapotrzebowania mocy.

5.3.2

W menu [Load Profile] użytkownik może sprawdzić dane zarejestrowane dla każdej krzywej obciążenia. Miernik obsługuje do 16 kanałów z krzywą obciążenia. Na każdym kanale można zapisać do maksymalnie 2000 danych dla wykresu. Na ekranie można wyświetlić tylko dane dotyczącego poszczególnego punktu rejestracji ponieważ nie ma możliwości graficznego wyświetlenia krzywej. Wykres krzywej może zostać sporządzony przy pomocy oprogramowania po przesłaniu danych dotyczącej krzywej obciążenia do PC. Interfejs danych krzywej jest analogiczny do interfejsu zapotrzebowania mocy.

5.3.3

W menu [Previous Value] (wartość zamrożonej energii) użytkownik może sprawdzić do 50 kanałów z zamrożonymi wartościami energii. Na każdym kanale można zapisać do 200 rekordów. Pamięć przechowywania jest podzielona na "dzień', "tydzień", "miesiąc". Interfejs wyświetlania danych dotyczących energii jest analogiczny do interfejsu zapotrzebowania mocy.

5.4 Status portu I/O

Po przejściu do Menu naciskać [UP] lub [DOWN], aby przemieścić kursor. Następnie wybrać [I/O] w menu głównym i nacisnąć [OK], aby przejść do podmenu. Przy pomocy funkcji sprawdzenia statusu portu I/O użytkownik może sprawdzić konfigurację 4 programowalnych portów I/O oraz ich nazwę i informacje na temat statusu. Interfejs inspekcji statusu portu I/O obejmuje 2 podinterfejsy, z których każdy wyświetla informacje o 2 portach I/O.

I/0	PRO	STA	CNT	I/0	PRO	STA	CNT
1	Т	1		3	IN	1	9999
2	Т	0		4	0UT	0	9999
		D R	V	T			г и
EKIT	19	DOAN DOX	M SEI	HIT	0 10 10		L MI NE SET

Opis interfejsu

W pierwszej kolumnie wyświetlona jest nazwa interfejsu (I/O) oraz numery poszczególnych portów (1, 2, 3, 4). W drugiej kolumnie "PRO" (Profile) określony jest bieżący sposób wykorzystania portu I/O. Istnieją cztery sposoby wykorzystania portu I/O i związane z nimi oznaczenia literowe: wyjście impulsowe ("PULSE"), wyjście alarmowe ("ALARM"), wejście wielotaryfowe ("TARI") oraz wejście inspekcji statusu ("STA"). "STA" odnosi się do stanu poziomu mocy, oznaczenie nie jest wyświetlane przy wyjściu impulsowym. "CNT" odnosi się do numeru porządkowego wyjścia alarmowego i wejścia inspekcji statusu. Wyjście impulsowe oraz wejście wielotaryfowe nie posiadają wartości "CNT".

W drugim i trzecim wierszu wyświetlane są informacje na temat portu I/O nr 2.

5.5 Interfejs rejestru

Po przejściu do menu naciskać [UP] lub [DOWN], aby przemieścić kursor. Wybrać [Log] w menu głównym i nacisnąć [OK], aby przejść do interfejsu rejestru.

Interfejs obejmuje rejestr systemu [System], rejestr zdarzeń [Event] oraz rejestr jakości energii [Quality]. Działanie rejestru systemu jest obligatoryjne, zdarzenie zostanie zarejestrowane w momencie zajścia. Działanie rejestru zdarzeń i rejestru jakości energii zależy od ustawień alarmu danych, co oznacza, że wszystkie parametry dwóch rejestrów są związane z parametrami alarmu, a rejestr wywołania powinien pojawić się w ustawieniach alarmu.

5.5.1

W rejestrze systemu [SYSTEM] zapisywane są głównie błędy odnotowane w oprogramowaniu, wyłączenia i włączenia miernika oraz zmiany ustawień miernika. Istnieje możliwość przeglądnięcia do 500 rekordów. Rejestr systemu działa obligatoryjnie (nie można go wyłączyć). Przykładowy interfejs jest przedstawiony na poniższym rysunku:

Opis interfejsu

W pierwszym wierszu wyświetlana jest informacja o bieżącym interfejsie.

W drugim wierszu wyświetlana jest informacja o numerze rejestru (maksymalna ilość rekordów to 500).

W trzecim wierszu wyświetlana jest informacja o dacie i czasie bieżącego rejestru systemu.

W czwartym wierszu wyświetlana jest informacja na temat typu zdarzenia wyzwalającego.

5.5.2

W rejestrze zdarzeń ["Event"] zapisywane są głównie informacje na temat alarmu oraz informacje na temat konfiguracji. Rejestr zdarzeń jest uzależniony od ustawień alarmu. System dokona sprawdzenia bieżącego stanu alarmu i jeśli jest aktywny rozpocznie rejestrację zdarzeń. Przykładowy interfejs jest przedstawiony na poniższym rysunku:

Opis interfejsu

W pierwszym wierszu wyświetlana jest informacja o bieżącym interfejsie.

W drugim wierszu wyświetlana jest informacja o numerze rejestru (maksymalna ilość rekordów to 500).

W trzecim wierszu wyświetlana jest informacja o dacie i czasie bieżącego rejestru systemu.

W czwartym wierszu wyświetlana jest informacja na temat typu zdarzenia wyzwalającego. Czynniki wpływające na aktualizacje rejestru zdarzeń są następujące:

RTC (Real Time Clock)	Alarm	prądu	W	Alarm całkowitej mocy pozornej
nie skonfigurował daty	przewo	dzie neutral	nym	
RTC (Real Time Clock)	Alarm	całkowitej	mocy	Alarm mocy pozornej dla fazy L1

nie skonfigurował daty	czynnej	
Alarm ujemnej mocy dla	Alarm mocy czynnej dla	Alarm mocy pozornej dla fazy L2
fazy L1	fazy L1	
Alarm ujemnej mocy dla	Alarm mocy czynnej dla	Alarm mocy pozornej dla fazy L3
fazy L2	fazy L2	
Alarm ujemnej mocy dla	Alarm mocy czynnej dla	Alarm całkowitego współczynnika
fazy L3	fazy L3	тосу
Alarm całkowitej mocy	Alarm całkowitej mocy	Alarm współczynnika mocy dla
ujemnej	biernej	fazy L1
Alarm prądu dla fazy L1	Alarm mocy biernej dla	Alarm współczynnika mocy dla
	fazy L1	fazy L2
Alarm prądu dla fazy L2	Alarm mocy biernej dla	Alarm współczynnika mocy dla
	fazy L2	fazy L3
Alarm prądu dla fazy L3	Alarm mocy biernej dla	
	fazy L3	

Uwaga:

Jeśli użytkownik ma zamiar uruchomić rejestrację zdarzeń dotyczących powyższych parametrów, należy przedtem aktywować dla nich funkcję alarmu. Funkcja rejestracji zdarzeń może być uruchomiona wraz z ustawieniami alarmu.

5.5.3

W rejestrze jakości energii [Quality] zapisywane są zdarzenia związane z błędami dotyczącymi jakości energii. Działanie rejestru jakości energii jest związane z ustawieniami alarmu. System dokona sprawdzenia bieżącego stanu alarmu i jeśli jest on uaktywniony rozpocznie rejestrację jakości energii. Przykładowy interfejs jest przedstawiony na poniższym rysunku:

Opis interfejsu

W pierwszym wierszu wyświetlana jest informacja o bieżącym interfejsie.

W drugim wierszu wyświetlana jest informacja o numerze rejestru (maksymalna ilość rekordów to 500).

W trzecim wierszu wyświetlana jest informacja o dacie i czasie bieżącego rejestru jakości energii.

W czwartym wierszu wyświetlana jest informacja na temat zdarzenia wyzwalającego.

Czynniki wpływające na generowanie rejestru zdarzeń są następujące:

Napięcie dla fazy	Alarm napięcia dla	Alarm napięcia	Alarm zawartości
L1 - brak fazy	fazy L1	miedzvfazowego	harmonicznych dla fazy
		L23	L3
Napięcie dla fazy	Alarm napięcia dla	Alarm napięcia	Alarm zawartości
L2 - brak fazy	fazy L2	międzyfazowego	harmonicznych dla
_		L13	napięcia międzyfazowego
			L12
Napięcie dla fazy	Alarm napięcia dla	Alarm zawartości	Alarm zawartości
L3	fazy L3	harmonicznych dla	harmonicznych dla
- brak fazy		fazy L1	napięcia międzyfazowego
			L23
Niestabilność	Alarm napięcia	Alarm zawartości	Alarm zawartości
częstotliwości	międzyfazowego	harmonicznych dla	harmonicznych dla
-	L12	fazy L2	napięcia międzyfazowego
		-	L13

Uwaga:

Jeśli użytkownik ma zamiar uruchomić rejestrację zdarzeń dotyczących powyższych parametrów, należy przedtem aktywować dla nich funkcję alarmu. Funkcja rejestracji zdarzeń może być uruchomiona wraz z ustawieniami alarmu.

5.6 Interfejs ustawień parametrów

Po przejściu do Menu naciskać przycisk [UP] lub [DOWN], aby przemieścić kursor. Wybrać [SET] w menu głównym i nacisnąć OK, aby przejść do interfejsu wpisywania hasła, jak na poniższym rysunku:

Hasło składa się z czterech cyfr. Za pomocą przycisków [UP] i [DOWN] zmieniane są cyfry, a przyciskiem [M] przemieszcza się kursor. Po wpisaniu poprawnego hasła i wciśnięciu przycisku [OK] następuje przejście do podmenu.

Domyślnym hasłem dla miernika jest 0000.

Menu główne ustawień obejmuje : "System" – ustawienia parametrów systemu, "I/O" - ustawienia programowalnych portów I/O, "Reset" - ustawiania resetowania danych, "Store" – ustawienia przechowywania danych, "Password" – ustawienia hasła użytkownika i administratora.

5.6.1

Podmenu ustawień parametrów systemu "System" jest pokazane na poniższym rysunku:

Menu ustawień parametrów systemu obejmuje: "Clock" – ustawienia zegara, "Wire" – ustawienia rodzaju instalacji, "Ratio" – ustawienia przekładni, "Tariff"- ustawienia wielotaryfowości, "Commu" – ustawienia komunikacji, "Storage M" – ustawienia trybu przechowywania danych.

5.6.1.1

Interfejs ustawień zegara (ścieżka dostępu "Set"/"System"/"Clock")

Opis interfejsu:

W pierwszym wierszu wyświetlona jest ścieżka dostępu do bieżącego interfejsu.

W drugim wierszu wyświetlona jest bieżące ustawienie daty (12-12-10, czyli 10 Grudnia 2012r.).

W trzecim wierszu wyświetlone jest bieżące ustawienie czasu.

Przyciski [UP] i [DOWN] służą do zmiany wartości daty i czasu, a za pomocą przycisku [M] przemieszcza się kursor. Po zakończeniu ustawień należy w celu potwierdzenia nacisnąć przycisk [OK]. Nastąpi powrót do poprzedniego menu.

5.6.1.2

Interfejs ustawień rodzaju instalacji (ścieżka dostępu "Set"/"System"/"Wire")

Opis interfejsu:

W pierwszym wierszu wyświetlona jest ścieżka dostępu do bieżącego interfejsu. W drugim wierszu wyświetlony jest symbol przedstawiający dany rodzaj instalacji:

W trzecim wierszu wyświetlone jest ustawienie zakresu napięcia (0~400V, napięcie międzyfazowe)

W czwartym wierszu wyświetlone jest ustawienie zakresu prądu (0~80A).

Przyciski [UP] i [DOWN] służą do zmiany wartości, a za pomocą przycisku [M] przemieszcza się kursor. Po zakończeniu ustawień należy w celu potwierdzenia nacisnąć przycisk [OK]. Nastąpi powrót do poprzedniego menu.

5.6.1.3

Interfejs ustawień przekładni (ścieżka dostępu "Set"/"System"/"Ratio")

Opis interfejsu

W pierwszym wierszu wyświetlona jest ścieżka dostępu do bieżącego interfejsu.

W drugim wierszu wyświetlone jest bieżące ustawienie przekładni prądowej CT (zakres 1~9999:1).

W trzecim wierszu wyświetlone jest bieżące ustawienie przekładni napięciowej VT (zakres 1~9999,9:1).

Przyciski [UP] i [DOWN] służą do zmiany wartości, a za pomocą przycisku [M] przemieszcza się kursor. Po zakończeniu ustawień należy w celu potwierdzenia nacisnąć przycisk [OK]. Nastąpi powrót do poprzedniego menu.

5.6.1.4

Interfejs ustawień wielotaryfowości (ścieżka dostępu "Set"/"System"/"Multitariff")

Etapy ustawień wielotaryfowości:

1. Wybrać sposób definiowana taryfy (port wejściowy I/O, komunikacja za pomocą oprogramowania, kalendarz).

2. Skonfigurować odpowiadające parametry zgodnie z różnymi sposobami definiowania taryfy.

A. Wybór portu wejściowego I/O jako sposobu definiowania taryfy ("Set"/"System"/"Tariff"/"Input").

SET.Sys.Tariff Tariff Source: I/O InPut Wybrać port wejściowy I/O jako sposób definiowania taryfy, a następnie zatwierdzić wybór przyciskiem [OK]. Jeśli porty I/O1 oraz I/O2 są zajęte w tym samym czasie, wybór nie zostanie potwierdzony i pojawi się komunikat "no available I/O port" (brak dostępnego portu I/O). W takim wypadku należy zwolnić jeden z portów I/O w interfejsie ustawień portów I/O. Jeśli port I/O jest dostępny, należy nacisnąć przycisk [OK] w celu potwierdzenia. Następnie pojawi się komunikat "Tariff source setting successful" (Ustawianie sposobu definiowania taryfy zakończone sukcesem). Od tego momentu zegar taryfy rozpocznie pomiar energii taryfowej zgodnie z odchyleniem poziomu mocy portu I/O.

B. Wybór komunikacji za pomocą oprogramowania jako sposobu definiowania taryfy ("Set"/"System"/"Tariff"/"Input")

SET. Sys.	Tariff
Tariff	Source:
Commu	nicate
Tariff Commu	Source: nicate

Po wyborze komunikacji za pomocą oprogramowania jako sposobu definiowania taryfy, trwanie taryfy, jak również wszystkie parametry, będą kontrolowane wyłącznie przez oprogramowanie. Za pomocą oprogramowania będzie również wybierany rodzaj taryfy. Należy nacisnąć [OK], aby potwierdzić i wrócić do poprzedniego Menu.

C. Wybór kalendarza jako sposobu definiowania taryfy ("Set"/"System"/"Tariff"/"Input")

SET. Sys. Tariff		
Time Zone		
Time Interval		
Special Day		

Przy pomocy kalendarza taryf ustawia się następujące parametry : Strefa czasowa, Interwał, Dzień specjalny.

W mierniku można ustawić 12 stref czasowych oraz czas rozpoczęcia i zakończenia interwału w danej strefie czasowej. Istnieje możliwość wyboru 8 harmonogramów, jeden

dzień może być podzielony na 12 interwałów. Czas początku i końca każdego interwału może zostać ustawiony. W mierniku można ponadto ustawić 254 specjalnych dni.

Ustawienie strefy czasowej: (Time zone)

Najpierw należy ustawić numery stref czasowych. Najwyższy numer to 12.

Numer strefy czasowej zmienia się za pomocą przycisków [UP] i [DOWN] i zatwierdza za pomocą przycisku [OK]. Następnie pojawi się menu, jak na rysunku poniżej:

Numery stref czasowych odpowiadają numerom zestawów. ("TimeZone Set"). Po ustawieniu przez użytkownika 4 stref czasowych pojawią się programowalne strefy, jak na rysunku powyżej. Jeśli strona jest pełna, kontynuacja wyświetli się na następnej.

Format wyświetlania strefy czasowej: numer seryjny strefy czasowej, czas rozpoczęcia strefy czasowej i etykieta strefy czasowej.

Na przykład: Strefa 1:0101-Etykieta1 oznacza pierwszą strefę, która rozpoczyna się 1 stycznia, z etykietą Tab1.

Jeśli zachodzi potrzeba modyfikacji strefy czasowej, należy wybrać jej numer i nacisnąć [OK], aby przejść do interfejsu ustawień.

Na powyższym rysunku przedstawione są ustawienia początku strefy czasowej i odpowiedniej etykiety strefy. Początek strefy czasowej powinien być ustawiany według następującej zasady: Czas początku pierwszej strefy czasowej powinien być końcem czasu ostatniej strefy czasowej. Kiedy czas początku bieżącej strefy czasowej przekracza czas początku kolejnej strefy czasowej, wtedy czas zostanie ustawiony jako początek poprzedniej strefy czasowej + 15dni (Użyć przycisków [UP] i [DOWN], aby zmniejszyć lub zwiększyć wartość oraz [M], aby przemieścić kursor). Po zakończeniu ustawień nacisnąć [OK] w celu zatwierdzenia zmian oraz wrócić do poprzedniego Menu.

Ustawienie interwału czasu (Time Interval)

W interfejsie ustawień interwału czasu do wyboru jest 8 tabel.

Należy wybrać tabelę do zmiany i zatwierdzić przyciskiem [OK].

Każda tabela może zostać podzielona na 12 sekcji. Czas trwaniu interwału i taryfa sekcji ustawiane są, jak na poniższym rysunku:

Format wyświetlania: Nazwa i numer sekcji, czas, taryfa. Dla przykładu Sect01: 00:00-T1 oznacza, że czas rozpoczęcia pierwszej sekcji to godzina 00:00, a taryfą tej sekcji jest taryfa T1.

Wybrać sekcję do modyfikacji i nacisnąć [OK], aby przejść do interfejsu, jak na poniższym rysunku:

Tabl.SectOl Set: Time Start 00:00 Tariff Set T1

W powyższym interfejsie użytkownik ustawia czas rozpoczęcia sekcji i odpowiednią taryfę. Sekcję ustawia się zgodnie z zasadą, że początek bieżącej sekcji powinien być końcem sekcji poprzedniej. Jeśli początek bieżącej sekcji nakłada się na czas innej sekcji, to czas rozpoczęcia tej drugiej zostanie zmieniony na czas rozpoczęcia poprzedniej sekcji + 15minut. Po zakończeniu ustawień nacisnąć przycisk [OK] dla potwierdzenia i powrotu do poprzedniego menu.

Ustawienia specjalnego dnia (Special Day):

Dzień specjalny, to dzień w którym użytkownik może ustawić niestandardowy harmonogram. Istnieje możliwość ustawienia do 254 specjalnych dni.

Format wyświetlania specjalnego dnia: Numer porządkowy dnia specjalnego, Data specjalnego dnia, harmonogram użyty dla specjalnego dnia. Na przykład: Da1:0501-Tab1 oznacza, że datą specjalnego dnia jest 1 Maja i tego dnia jest użyty harmonogram o etykiecie Tab1.

SpecialDay Set: Day01:0501-Tab1 Day02:0910-Tab2 Day03:1001-Tab4 Specjalny dzień, który nie jest w użyciu jest wyświetlany jak 0000-00. Na przykład Day03:0000-00 oznacza, że numer seryjny 3 dnia specjalnego nie jest aktualnie w użyciu. W celu modyfikacji wybranego dnia specjalnego należy go wybrać kursorem i nacisnąć przycisk [M]. Wyświetlony zostanie następujący interfejs:

Day01 Set: Enable: ON Date Set:05 - 01 Tariff Set: T4

W interfejsie ustawień użytkownik może aktywować dzień specjalny oraz ustawić datę i harmonogram. Po zakończeniu ustawień należy nacisnąć [OK], aby potwierdzić zmiany i powrócić do poprzedniego menu.

5.6.1.5

Ustawienia komunikacji: wybrać menu "Set"/"System"/"Clock" i przejść do interfejsu komunikacji.

Miernik może komunikować się na dwa sposoby: przy pomocy RS-485 lub M-BUS. Dla poszczególnych sposobów komunikacji istnieje potrzeba wykonania różnych ustawień. Komunikacja za pomocą RS-485 i M-BUS wykorzystuje ten sam port wyjściowy.

1. Ustawienia komunikacji RS-485

Interfejs ustawień RS-485 obejmuje: adres, szybkość transmisji, bit parzystości

Opis interfejsu

W pierwszym wierszu wyświetlana jest bieżąca ścieżka dostępu do interfejsu.

W drugim wierszu wyświetlany jest adres ustawień, zakres to: 1~255

W trzecim wierszu wyświetlana jest szybkość transmisji. Do wyboru są następujące wartości 1200, 2400, 4800, 9600, 19200bps.

W czwartym wierszu wyświetlane są ustawienia parzystości. Użytkownik może wybrać parzystość, nieparzystość lub brak parzystości.

2. Ustawienia łączności M-BUS

Interfejs ustawień M-BUS obejmuje: adres, szybkość transmisji, dostęp

Opis interfejsu

W pierwszym wierszu wyświetlana jest bieżąca ścieżka dostępu do interfejsu.

W drugim wierszu wyświetlany jest adres ustawień, zakres to: 1~255

W trzecim wierszu wyświetlana jest szybkość transmisji. Do wyboru są następujące wartości 300, 600, 1200, 2400, 4800, 9600bps

W czwartym wierszu wyświetlane są ustawienia dostępu. Użytkownik może ustawić "otwarty" (OPEN), "zamknięty" (CLOSED), "zabezpieczony hasłem" (PASSWORD).

5.6.1.6

Ustawienia trybu przechowywania danych: (Set/System/Store M)

Interfejs ustawień trybu przechowywania danych umożliwia zmianę ustawień rejestracji danych i rejestru logowania. Istnieją dwa tryby: "tryb cykliczny" (cycle mode) i "tryb liniowy" (linear mode).

Tryb cykliczny (cycle mode): Gdy pamięć zostanie zapełniona, nowe dane nadpiszą stare dane (zapis rozpocznie się na nowo od początku).

Tryb liniowy (linear mode): W momencie zapełnienia pamięci rejestracja zostanie zatrzymana.

Po wybraniu trybu przechowywania danych nacisnąć [OK] i wrócić do poprzedniego menu.
5.6.2 Podmenu ustawień programowalnego portu I/O (Set/ I/O) – widok poniżej.

Konfiguracja programowalnego portu I/O obejmuje: konfigurację wyjścia impulsowego (PulseConfig), wyjścia alarmowego (AlarmConfig) oraz konfigurację wyjścia inspekcji statusu (StateConfig).

W pierwszym wierszu wyświetlony jest odpowiedni port I/O. "!" oznacza, że port jest zajęty, natomiast "*" oznacza, że port I/O jest dostępny.

5.6.2.1 Konfiguracja wyjścia impulsowego (Set/ I/O/PulseConfig.) Etapy ustawień:

1. Wejść do menu ustawień wyjścia impulsowego. Domyślną wartością jest aktualny numer wyjścia impulsowego. Jeśli zachodzi potrzeba zmodyfikowania wartości, należy użyć przycisku [UP] lub [DOWN]. Numer wyjścia nie może przekraczać ilości dostępnych portów I/O (maksymalna wartość:4). Jeśli numer wyjścia impulsowego to 0, funkcja wyjścia impulsowego jest niedostępna.

W celu zmiany numeru portu wyjścia impulsowego należy użyć przycisków [UP] i [DOWN], a następnie [OK], aby zatwierdzić wybór. Następnie wyświetli się kanał wyjścia impulsowego:

Wyświetlenie numeru kanału wyjścia impulsowego jest zależne od numeru portu wyjścia impulsowego wybranego na poprzednim ekranie. Gdy ustawiono tylko wyjście impulsowe numer 1, na ekranie wyświetli się tylko "Pulse1".

2. Wybrać kanał wyjścia impulsowego do konfiguracji i nacisnąć [OK], aby przejść do interfejsu ustawień parametrów tego kanału.

Interfejs konfiguracji parametrów obejmuje ustawienia: portu fizycznego I/O, parametrów w standardzie "OBIS", częstotliwości, szerokości impulsu. Nazwy parametrów wyświetlane są po lewej stronie, natomiast bieżące wartości po prawej stronie. Należy wybrać parametr do zmiany i nacisnąć [OK], aby przejść do interfejsu jego konfiguracji. Następnie wybrać odpowiednią wartość, nacisnąć [OK] w celu zatwierdzenia i wrócić do poprzedniego menu. Po wybraniu "Phy I/O" wyświetlą się numery dostępnych portów I/O (porty zajęte nie zostaną wyświetlone).

Parametry "OBIS" obejmują:

1. Całkowita importowana energia czynna
2. Całkowita eksportowana energia czynna
3. Całkowita importowana energia bierna
4. Całkowita importowana energia bierna
5. Nieaktywna

Wybór 5. Nieaktywna oznacza, że wyjście impulsowe jest zamknięte.

5.6.2.2 Konfiguracja wyjścia alarmowego (Set/ I/O / AlarmConfig)

Etapy ustawień:

1. Wejść do podmenu ustawień wyjścia alarmowego. Do wyboru jest 25 kanałów alarmu wyjściowego, które wyświetlane są na kolejnych stronach.

Format wyświetlania kanału alarmowego: numer kanału + jego stan, np. "Channel 01 ON" oznacza, że funkcja alarmu na kanale 1 jest aktywowana; "Channel 02 OFF" oznacza, że funkcja alarmu na kanale 2 nie jest aktywna. Jeżeli dany kanał jest aktywny, oznacza to, że jest on dostępny.

2. Wybrać numer seryjny kanału, który ma zostać zmodyfikowany lub dodany, a następnie nacisnąć [OK], aby przejść do podmenu.

Ch1 Enable: ON	Action: ON Alway
Phy I/0: I/04	Log Enable: OFF
OBIS: Voltage L1	
Alarm Threshold	

Konfiguracja parametrów obejmuje 6 parametrów wyświetlanych na 2 ekranach: stan kanału alarmu, port fizyczny I/O, parametry zgodne ze standardem OBIS, próg wyzwalania parametrów alarmu (Alarm Threshold), tryb działania alarmu (Action), stan aktywowania rejestracji alarmu (Log Enable).

Stan alarmu: wybiera się "ON" lub "OFF" aby aktywować lub deaktywować funkcję alarmu. Po zmianie stanu zaktualizuje się także status aktywowania w poprzednim menu.

3. Istnieje możliwość wyboru jedynie dostępnego portu I/O. Jeśli użytkownik zamierza wykorzystać zajęty port I/O, należy najpierw wyłączyć funkcję włączoną na tym porcie.

Parametry alarmu według standardu OBIS mogą być wybrane spośród następujących ustawień.

Napięcie fazowe L1	Prąd fazowy L3	Moc bierna L2	Współczynnik mocy dla fazy L2
Napięcie fazowe L2	Prąd w przewodzie neutralnym	Moc bierna L3	Współczynnik mocy dla fazy L3
Napięcie fazowe L3	Całkowita moc czynna	Całkowita moc pozorna	Zawartość harmonicznych napięcia L1
Napięcie międzyfazowe L12	Moc czynna L1	Moc pozorna L1	Zawartość harmonicznych napięcia L2
Napięcie międzyfazowe L23	Moc czynna L2	Moc pozorna L2	Zawartość harmonicznych napięcia L3
Napięcie międzyfazowe L13	Moc czynna L3	Moc pozorna L3	Zawartość harmonicznych napięcia L12
Prąd fazowy L1	Całkowita moc czynna	Całkowity współczynnik mocy	Zawartość harmonicznych napięcia L23
Prąd fazowy L2	Moc bierna L1	Współczynnik mocy dla fazy L1	Zawartość harmonicznych napięcia L13

4. Wartości ustawianych progów alarmu będą się różnić w zależności od parametrów OBIS. Niektóre parametry posiadają dolne i górne limity, a inne tylko górne. Ekran ustawień progu alarmu wygląda w następujący sposób:

Alarm Threshold		
Voltage L1:		
Above:	240.0V	
Below:	180.0V	

W drugim wierszu umieszczona jest nazwa parametru OBIS, a trzeciej i czwartej wartości górne (Above) i dolne (Below) limitów. Po zakończeniu ustawień nacisnąć przycisk [OK], aby wrócić do poprzedniego menu.

5. Menu trybu działania alarmu umożliwia wybór dwóch ustawień:

"ON Alway": Stale włączony, gdy nie ma alarmu, stan wyjścia – jest włączony (ON), gdy wystąpi alarm – stan zmienia się na wyłączony (OFF)

"OFF Alway": Stale wyłączony, gdy nie ma alarmu, stan wyjścia – jest wyłączony (OFF), gdy wystąpi alarm – stan zmienia się na włączony (ON)

6. Aktywowanie rejestracji alarmu: jeśli rejestracja alarmu jest aktywna, po spełnieniu warunku uruchomienia alarmu, zdarzenie to zostanie zapisane w rejestrze (rejestr zdarzeń lub rejestr jakości energii)

Funkcja alarmu zlicza ilość alarmów w przeliczeniu na poszczególne porty I/O. Ilość alarmów może zostać sprawdzona w menu portów I/O.

5.6.2.3

Konfiguracja inspekcji statusu (Set/ I/O/ StateConfig)

Inspekcja stanu jest stosowana do oceny stanu zewnętrznego za pomocą wysokiego i niskiego poziomu mocy wejścia portu I/O. Inspekcja statusu i wejście taryfy współdzielą port I/O1 lub I/O2. Jeden port I/O wspiera tylko jedną funkcję. Jeśli wejście taryfy zajmuje zarówno port I/O1 jak i port I/O2, funkcja inspekcji statusu nie uruchomi się (nie zostanie wyświetlona).

Istnieje możliwość ustawienia do 2 kanałów inspekcji statusu. Jeśli wartość ustawienia to 0, oznacza to, że funkcja inspekcji statusu nie jest aktywna. Funkcja inspekcji statusu obejmuje: inspekcję statusu wysokiego poziomu mocy, inspekcję statusu niskiego poziomu mocy.

5.6.3

Menu ustawień czyszczenia danych (Set/Reset)

Przed przejściem do interfejsu czyszczenia danych należy wpisać hasło administratora.

Metoda wpisywania hasła administratora jest tak sama jak w przypadku hasła użytkownika. Po wpisania hasła nacisnąć przycisk [OK], aby przejść do podmenu.

Menu czyszczenia danych obejmuje: czyszczenie danych dotyczących energii (Energy), czyszczenie danych przechowywania (Stores), czyszczenie rejestrów (Logs), czyszczenie danych dotyczących portów I/O (Count) oraz czyszczenie wszystkich danych (All Data).

5.6.3.1

Czyszczenie danych dotyczących energii (Set/Reset/Energy)

Przejść do podmenu czyszczenia danych dotyczących energii. Zostaną wyświetlone następujące parametry: energia czynna (ACT), energia bierna (REACT), energia pozorna (APP), energia kwadrantowa (Quadrant), energia taryfowa (Tariff) oraz energia-całość (All Data).

Wyżej wymienione pozycje obejmują:

Parametry energii	Szczegóły parametrów
Importowana energia czynna	Importowana energia czynna dla fazy L1/L2/L3,
	Całkowita importowana energia czynna
Eksportowana energia czynna	Eksportowana energia czynna dla fazy L1/L2/L3,
	Całkowita eksportowana energia czynna
Importowana energia bierna	Importowana energia bierna dla fazy L1/L2/L3,
	Całkowita importowana energia bierna
Eksportowana energia bierna	Eksportowana energia bierna dla fazy L1/L2/L3,
	Całkowita eksportowana energia bierna
Importowana energia pozorna	Importowana energia pozorna dla fazy L1/L2/L3,
	Całkowita importowana energia pozorna
Eksportowana energia pozorna	Eksportowana energia pozorna dla fazy L1/L2/L3,
	Całkowita eksportowana energia pozorna

Taryfowa Importowana energia	Całkowita importowana energia czynna taryfy 1,
czynna	laryly 2, laryly 3, laryly 4
Taryfowa eksportowana energia	Całkowita eksportowana energia czynna taryfy 1,
czynna	taryfy 2, taryfy 3, taryfy 4
Taryfowa importowana energia	Całkowita importowana energia bierna taryfy 1,
bierna	taryfy 2, taryfy 3, taryfy 4
Taryfowa eksportowana energia	Całkowita eksportowana energia bierna taryfy 1,
bierna	taryfy 2, taryfy 3, taryfy 4
Energia czynna netto	Energia czynna netto dla fazy L1/L2/L3, całkowita
	energia czynna netto
Energia bierna netto	Energia bierna netto dla fazy L1/L2/L3, całkowita
	energia bierna netto
Energia pozorna netto	Energia pozorna netto dla fazy L1/L2/L3, całkowita
	energia pozorna netto
Energia kwadrantu 1	Energia bierna kwadrantu 1 T1/T2/T3/T4, całkowita
	bierna energia
Energia kwadrantu 2	Energia bierna kwadrantu 2 T1/T2/T3/T4, całkowita
	bierna energia
Energia kwadrantu 3	Energia bierna kwadrantu 3 T1/T2/T3/T4, całkowita
_	bierna energia
Energia kwadrantu 4	Energia bierna kwadrantu 4 T1/T2/T3/T4, całkowita
_	bierna energia

Tryb czyszczenia danych: wybrać jeden z rodzajów energii, nacisnąć [OK], aby usunąć wszystkie dane należące do tej kategorii. Wybrać "All data", aby usunąć wszystkie dane dotyczące energii.

5.6.3.2

Czyszczenie danych przechowywania (Set/Reset/Stores) Wejść do podmenu czyszczenia danych przechowywania:

Interfejs obejmuje 3 parametry do wyczyszczenia: przechowywane dane dotyczące zapotrzebowania mocy (Demand), dane dotyczące rejestracji energii (Previous Values), dane krzywej obciążenia (Load Profile).

1. Dane dotyczące zapotrzebowania mocy: wybrać [Demand] i nacisnąć [OK], aby przejść do podmenu.

Select Channel: Channel 01-10 Channel 11-20 Channel 21-30

Dane dotyczące zapotrzebowania mocy przechowywane są w maks. 50 kanałach. Należy wybrać numer kanału i nacisnąć [OK], aby wyczyścić dane.

Przykład: Usunięcie danych przechowywanych w kanale 15. Najpierw należy wybrać przedział kanałów 11-20, aby przejść do podmenu. Następnie wybrać kanał 15 i nacisnąć [OK], aby wyczyścić dane. Po wyborze przedziału kanałów 01-50 nastąpi wyczyszczenie danych z wszystkich 50 kanałów.

2. Czyszczenie danych rejestracji "zamrożonych" wartości energii: wybrać [Previous value] i nacisnąć [OK], aby przejść do podmenu.

Select Channel:			
Channel	01-10		
Channel	11-20		
Channel	21-30		

Dane dotyczące "zamrożonych" wartości energii przechowywane są na maks. 50 kanałach. Należy wybrać numer kanału i nacisnąć [OK], aby wyczyścić dane.

Przykład: Usunięcie danych przechowywanych na kanale 15. Najpierw należy wybrać przedział kanałów 11-20, aby przejść do podmenu. Następnie wybrać kanał 15 i nacisnąć [OK], aby wyczyścić dane. Po wyborze przedziału kanałów 01-50 nastąpi wyczyszczenie danych z wszystkich 50 kanałów.

3 .Czyszczenie danych dotyczących krzywej obciążenia: wybrać [Load profile] i nacisnąć [OK], aby przejść od podmenu.

Dane dotyczące krzywej obciążenia przechowywane są w 16 kanałach. Należy wybrać numer kanału i nacisnąć [OK], aby wyczyścić dane.

5.6.3.3

Czyszczenie rejestrów (Set/Reset/Logs)

Interfejs obejmuje: czyszczeniu rejestru systemu (System Logs), czyszczenie rejestru zdarzeń (Event Logs), czyszczenie rejestru jakości mocy (Quality Logs). Należy wybrać rodzaj rejestru i nacisnąć [OK], aby zresetować wszystkie dane z wybranego rejestru.

5.6.3.4

Czyszczenie danych dotyczących zliczania stanów portów I/O.

SET. Reset. Count		
Alarm Count		
State Count		

Interfejs obejmuje: czyszczenie danych zliczania dotyczących wyjścia alarmowego, czyszczenie danych dotyczących zliczania inspekcji statusu. Należy wybrać odpowiedni typ i nacisnąć [OK], a następnie wrócić do poprzedniego menu.

5.6.3.5

Czyszczenie wszystkich danych (Set/Reset/All Data)

Po wybraniu tej funkcji zostaną usunięte wszystkie dane i rejestry, w tym: dane dotyczące energii, dane przechowywania, rejestry i numery portów I/O

5.6.4

Menu przechowywania danych (Set/Store)

SET. Store		
Demand		
Load Profile		
Previous Values		

Menu przechowywania danych obejmuje: Zapotrzebowanie mocy (Demand), Profil obciążenia (Load Profile), Poprzednie wartości (Poprzednie wartości).

5.6.4.1

Ustawienia przechowywania danych dotyczących zapotrzebowania mocy (Set/Stores/Demand)

Istnieje możliwość zapisu danych dotyczących zapotrzebowania mocy na maksymalnie 50 kanałach. Należy wybrać żądany kanał i nacisnąć [OK], aby przejść do interfejsu konfiguracji parametrów.

Przykład: Jeśli użytkownik zamierza dokonać konfiguracji przechowywania danych na kanale 3, należy najpierw wybrać przedział [01-10] i nacisnąć [OK], a następnie wybrać [Channel 03] i przejść do interfejsu ustawień.

Select Channel: Select Channel	
Channel 01-10	Channel 01 ON
Channel 11-20	Channel 02 OFF
Channel 21-30	Channel 03 OFF

Format wyświetlania interfejsów. W interfejsie po prawej stronie wpisany jest numer kanału zapotrzebowania mocy (np. Channel 01) oraz wskaźnik włączenia kanału (ON lub OFF). W interfejsie po lewej stronie wybiera się przedział kanałów do konfiguracji. Należy nacisnąć [OK], aby przejść do interfejsu ustawień parametrów.

Ch1 Enable:	ON
OBIS: Voltage	L1
Interval: 5	min
Period:	2h

W powyższym interfejsie użytkownik może dokonać następujących ustawień: włączenie kanału, dopasowanie odpowiedniego parametru OBIS, czas trwania interwału, okres przechowywania danych zapotrzebowania mocy.

Wybór parametrów OBIS:

Całkowita importowana energia czynna	Importowana energia czynna taryfy 2	Całkowita zawartość harmonicznych napięcia międzyfazowego L23	Całkowita moc bierna
Importowana energia czynna dla fazy L1	Importowana energia czynna taryfy 3	Całkowita zawartość harmonicznych napięcia międzyfazowego L13	Moc bierna fazy L1
Importowana energia czynna dla fazy L2	Importowana energia czynna taryfy 4	Prąd fazy L1	Moc bierna fazy L2
Importowana energia czynna dla fazy L3	Napięcie fazowe fazy L1	Prąd fazy L2	Moc bierna fazy L3
Całkowita importowana energia bierna	Napięcie fazowe fazy L2	Prąd fazy L3	Całkowita moc pozorna
Importowana energia bierna dla fazy L1	Napięcie fazowe fazy L3	Całkowita zawartość harmonicznych prądu dla fazy L1	Moc pozorna fazy L1
Importowana energia bierna dla fazy L2	Napięcie międzyfazowe L12	Całkowita zawartość harmonicznych prądu dla fazy L2	Moc pozorna fazy L2
Importowana energia bierna dla fazy L3	Napięcie międzyfazowe L23	Całkowita zawartość harmonicznych prądu dla fazy L3	Moc pozorna fazy L3
Całkowita importowana	Napięcie międzyfazowe I 13	Całkowita moc	Licznik wyjścia
Importowana energia pozorna dla fazy L1	Całkowita zawartość	Zawartość harmonicznych	Importowana energia bierna dla taryfy 1

	h ormonio zny oh	produtiv	
	narmonicznych	prądu w	
	napięcia dla fazy	przewodzie	
	L1	neutralnym	
Importowana energia pozorna dla fazy L2	Całkowita zawartość harmonicznych napięcia dla fazy L2	Moc czynna fazy L1	Importowana energia bierna dla taryfy 2
Importowana energia pozorna dla fazy L3 L3 Całkowita zawartość harmonicznych napięcia dla fazy L3		Moc czynna fazy L2	Importowana energia bierna dla taryfy 3
Energia czynna wejściowa dla taryfy 1	Całkowita zawartość harmonicznych napięcia dla napięcia międzyfazowego L12	Moc czynna fazy L3	Importowana energia bierna dla taryfy 4

Interwały czasowe, w których kalkulowane są dane zapotrzebowania: 1,2, 5, 10, 15, 20, 30, 60, 120, 180, 240, 360, 480, 720, 1440 min.

Okresy danych zapotrzebowania mocy: 1h, 2h, 3h, 6h, 12h, 18h, 1 dzień, 1 tydzień, 1 miesiąc.

5.6.4.2

Ustawienia przechowywania danych dotyczących krzywej obciążenia (Set/Stores/Load Profile)

Krzywa obciążenia może jednocześnie lub pojedynczo rejestrować dane parametrów na 16 kanałach. Należy wybrać kanał i nacisnąć [OK], aby przejść do interfejsu ustawień parametrów.

Select Channel:	Ch1 Enable: ON
Channel 01 ON	OBIS: Ep IMP L1
Channel 02 OFF	Max Number: 5000
Channel 03 OFF	Interval: 10min

W interfejsie wykonywane są następujące ustawienia: włączenie funkcji, dopasowanie parametru OBIS, maksymalna ilość danych przechowywania, interwał.

Funkcja krzywej obciążenia umożliwia wybór następujących parametrów.

Całkowita	Importowana energia	Importowana energia	Napięcie
importowana	bierna dla fazy L1	pozorna dla fazy L3	międzyfazowe L23
energia czynna			
Całkowita	Importowana energia	Eksportowana energia	Napięcie
eksportowana	bierna dla fazy L2	pozorna dla fazy L1	międzyfazowe L13
energia czynna			
Importowana	Importowana energia	Eksportowana energia	Prąd fazowy L1
energia czynna	bierna dla fazy L3	pozorna dla fazy L2	
dla fazy L1			
Importowana	Eksportowana energia	Eksportowana energia	Prąd fazowy L2
energia czynna	bierna dla fazy L1	pozorna dla fazy L3	
dla fazy L2			
Importowana	Eksportowana energia	Transformacja energii	Prąd fazowy L3
energia czynna	bierna dla fazy L2	czynnej na walutę	
dla fazy L3			
Eksportowana	Eksportowana energia	Transformacja energii	Prąd w przewodzie
energia czynna	bierna dla fazy L3	czynnej na ilość CO2	neutralnym
dla fazy L1			
Eksportowana	Całkowita importowana	Napięcie fazowe dla	Całkowity
energia czynna	energia pozorna	fazy L1	współczynnik mocy
dla fazy L2			
Eksportowana	Całkowita	Napięcie fazowe dla	Współczynnik mocy
energia czynna	eksportowana energia	fazy L2	dla fazy L1
dla fazy L3	pozorna		
Całkowita	Importowana energia	Napięcie fazowe dla	Współczynnik mocy
importowana	pozorna dla fazy L1	fazy L3	dla fazy L2
energia bierna			
Całkowita	Importowana energia	Napięcie	Współczynnik mocy
wyjściowa	pozorna dla fazy L2	międzyfazowe L12	dla fazy L3
energia bierna	-	-	-

Dane krzywej obciążenia mogą być rejestrowane na 16 kanałach i mogą obejmować 80000 danych. Maksymalna pojemność przechowywania dla każdego kanału to 5000.

Interwały czasowe, w których kalkulowane są dane dotyczące prognozowanego zapotrzebowania mocy: 1,2, 5, 10, 15, 20, 30, 60, 120, 180, 240, 360, 480, 720 lub 1440 min.

5.6.4.3

Ustawienia rejestrowania "zamrożonych" wartości energii (Set/Stores/Previous values)

Dane zarejestrowanych "zamrożonych" wartości energii mogą być przechowywane w 50 kanałach. Użytkownik wybiera żądany kanał naciskając [OK] i przechodzi do interfejsu konfiguracji parametrów.

Przykład: Jeśli użytkownik chce aktywować funkcję rejestrowania "zamrożonych" wartości energii na 3 kanale, wybiera przedział kanałów "Channel 1-10", naciska [OK], a następnie wybiera "Channel 03", aby przejść do interfejsu ustawień funkcji.

Format wyświetlania interfejsów. W interfejsie po prawej stronie wpisany jest numer kanału zapotrzebowania mocy oraz wskaźnik włączenia kanału. W interfejsie po lewej stronie wybiera się przedział kanałów do konfiguracji. Należy nacisnąć [OK], aby przejść do interfejsu ustawień parametrów.

Ch1 Ena	able	e:	ON
OBIS:	Ep	IMP	L1
Period:		Ι	Day

W interfejsie dokonuje się następujących ustawień: włączenie funkcji (Ch Enable ON lub OFF), dopasowanie parametru OBIS, okres przechowywania danych.

Funkcja rejestracji "zamrożonych wartości energii" umożliwia wybór następujących parametrów.

Całkowita	Eksportowana	Importowana energia	Energia czynna netto dla
importowana	energia bierna dla	czynna dla taryfy 3	fazy L1
czynna energia	fazy L3		
Całkowita	Całkowita	Importowana energia	Energia czynna netto dla
wyjściowa	importowana	czynna dla taryfy 4	fazy L2
energia czynna	energia pozorna		
Importowana	Całkowita	Importowana energia	Energia czynna netto dla
energia czynna	eksportowana	bierna dla taryfy 1	fazy L3
dla fazy L1	energia pozorna		
Importowana	Importowana	Importowana energia	Całkowita energia bierna
energia czynna	energia pozorna	bierna dla taryfy 2	netto
dla fazy L2	dla fazy L1		
Importowana	Importowana	Importowana energia	Energia bierna netto dla
energia czynna	energia pozorna	bierna dla taryfy 3	fazy L1
dla fazy L3	dla fazy L2		
Eksportowana	Importowana	Importowana energia	Energia bierna netto dla
energia czynna	energia pozorna	bierna dla taryfy 4	fazy L2
dla fazy L1	dla fazy L3		

Eksportowana	Eksportowana	Eksportowana	Energia bierna netto dia
energia czynna	energia pozorna	energia czynna dla	fazy L3
dla fazy L2	dla fazy L1	taryfy 1	
Eksportowana	Eksportowana	Eksportowana	Całkowita energia
energia czynna	energia pozorna	energia czynna dla	pozorna netto
dla fazy L3	dla fazy L2	taryfy 2	
Całkowita	Eksportowana	Eksportowana	Energia pozorna netto
importowana	energia pozorna	energia czynna dla	dla fazy L1
energia bierna	dla fazy L3	taryfy 3	-
Całkowita	Wyczyszczenie	Eksportowana	Energia pozorna netto
eksportowana	danych całkowitej	energia czynna dla	dla fazy L2
energia bierna	importowanej	taryfy 4	
U U	energii czynnej	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Importowana	Wyczyszczenie	Eksportowana	Energia pozorna netto
energia bierna	danych całkowitej	energia bierna dla	dla fazy L3
dla fazy L1	eksportowanei	tarvfv 1	,
,	energii czvnnei		
Importowana	Wvczvszczenie	Eksportowana	Transformacia energii
energia bierna	danvch całkowitej	energia bierna dla	czvnnei na walute
dla fazy L2	importowanei	tarvfv 2	
	energii biernei		
Importowana	Wyczyszczenie	Eksportowana	Transformacia energii
energia bierna	danych całkowitej	energia bierna dla	czvnnej na ilość CO2
dla fazy I 3	eksportowanei	tarvfv 3	
	energii biernei		
Eksportowana	Importowana	Eksportowana	
energia bierna	energia czynna	energia bierna dla	
dla fazy L1	dla taryfy 1	taryfy 4	
Eksportowana	Importowana	Całkowita energia	
energia bierna	energia czynna	czynna netto	
dla fazy L2	dla taryfy 2		

Powyższe parametry mogą zostać podzielone na cztery rodzaje: energia czynna, energia bierna, energia pozorna, energia taryf.

Okres przechowywania "zamrożonych" wartości energii: dzień, tydzień, miesiąc.

5.7 Menu "About"

Menu "About" służy do uzyskania informacji na temat numeru wersji, daty, czasu oraz całkowitego czasu pracy urządzenia.

W oknie 1/3 wyświetlona jest informacja na temat numeru wersji sprzętu i oprogramowania miernika.

W oknie 2/3 wyświetlana jest bieżąca wartość daty i czasu systemowego miernika. W oknie 3/3 wyświetlana jest całkowita długość pracy miernika w godzinach.

5.8 Ustawienia języka

Miernik obsługuje dwa języki: chiński i angielski, jak na poniższym ekranie.

II. Instrukcja obsługi oprogramowania

1. Funkcje oprogramowania

Przy pomocy oprogramowania użytkownik może zdalnie odczytać dane pomiarowe i ustawiać parametry obejmujące: zapytania dotyczące parametrów chwilowych, zapytania dotyczące danych energii, zapytania dotyczące analizy harmonicznych, zapytania dotyczące statusu portu I/O, zapytania dotyczące rejestru zapotrzebowania i jego ustawienia, zapytania dotyczące profilu obciążenia i jego ustawienia, zapytania dotyczące profilu obciążenia i jego ustawienia, zapytania dotyczące danych "zamrożenia" energii i jej ustawienia, zapytania dotyczące rejestracji danych, parametry systemowe, ustawienia wyjścia impulsowego, ustawienia alarmu, ustawienia statusu pracy, resetowanie ustawień, ustawienia języka itd. Funkcja taryfy energii umożliwia pomiar energii w jakimkolwiek interwale (najkrótszy czas trwania interwału – 15min) i odczyt danych energii ("sum", "sharp", "peak", "flat", "valley"). Funkcja harmonicznych umożliwia analizę harmonicznych 2~63 rzędu w czasie rzeczywistym oraz ich prezentację graficzną. Funkcja profilu obciążenia umożliwia sporządzenie wykresu zarejestrowanych danych.

Jeśli użytkownik chce zastosować port RS-485 do zdalnej komunikacji, należy do portu podłączyć szeregowo rezystor 120Ω

2. Instalacja oprogramowania

1) Środowisko systemowe: Win9x, WinME, Win2000/XP

2) Instalacja: kliknąć 2 razy na ikonie setup.exe i postępować krok po kroku zgodnie z instrukcjami na ekranie. Wybrać język angielski jako język instalacji.

ARZ	Z_5D InstallShield Wizard	X
C	hoose Setup Language Select the language for the installation from the choices below.	
	Chinese (Simplified English (United States)	
	l⊋	
linsta	allShield)

Tab.1 Wybór języka instalacji

3) Po przejściu do następnego ekranu następuje przygotowywanie ustawień do instalacji.

ARZ_5D - InstallShield Wizard	
Preparing Setup Please wait while the InstalShield Wizard prepares the setup.	No.
ARZ_5D Setup is preparing the InstallShield Wizard, which will guide you th setup process. Please wait.	rough the rest of the
InstalShield	
ß	Cancel

Tab.2 Przygotowanie ustawień

4) Po ukazaniu się poniższego ekranu należy nacisnąć przycisk "next"

Tab.3 Rozpoczęcie instalacji

5) W celu zmiany ścieżki docelowej do instalacji pliku należy nacisnąć przycisk "Change", a następnie, po wyborze ścieżki, nacisnąć przycisk "Next".

ARZ_5D -	InstallShield Wizard	<u> </u>	×
Choose D Select id	Destination Location older where setup wil install fles.		
	Install ARZ_5D to: C:\Program Files\ARZ_5D	Change	
InstallShield -		< Back Next > Cancel	

Tab. 4 Zmiana ścieżki docelowej do instalacji programu

Choose Folder	ARZ_5D - InstallShield Wizard
Please select the installation folder . Path:	Ready to Install the Program The wizard is ready to begin installation.
C:\Program Files\ARZ_SD	Click Instal to begin the installation.
Directories:	If you want to review or change any of your installation settings, dick Back. Click Cancel to exit the wizard.
OK Cancel	Instal Shield

Tab. 5 Wybór folderu

Tab.6 Rozpoczęcie instalacji

Tab.7 Zakończenie instalacji

Po naciśnięciu przycisku "Finish" na pulpicie powinna pojawić się ikona "ARZ-5D"

Tab.8 Ikona szybkiego startu

3. Ustawienia ekranu operacyjnego

Po zainstalowaniu oprogramowania należy dwukrotnie kliknąć na ikonę ARZ 5D na pulpicie, aby uruchomić program i otworzyć poniższy ekran. Wybrać numer odpowiadającego portu komunikacyjnego i szybkość transmisji (COM2, 9600bps).

UWAGA:

W zależności od dostępnych wejść COM komputera i zastosowanego adaptera RS485/RS232 albo RS485/USB (jeżeli to konieczne) aktywne mogą być wejścia COM1 lub COM2 lub COM3. Należy sprawdzić, które będzie właściwe.

Następnie nacisnąć przycisk 📕, aby otworzyć interfejs wyszukiwania.

Użytkownik wpisuje numer odpowiadającego portu komunikacyjnego zgodnie z ustawieniem miernika (domyślne ustawienie: 1).

File Help				
A				۲
COM2	al Setting ess DDM1 Flate 3600bps v I Part Setting 8.M.1 v B y Nana 1			
Welcome to use the so	linard	Sent Rece	ive: 10/10/2014	₽19PM

Tab. 9 Wybór numeru portu komunikacyjnego i szybkości transmisji

Prompt		Searching Meter Ac	ddress	X
input start address (1–247)	OK. Cancel	Search Address	01 (Hex) 001 (Dec)	Stop Search
0				

Tab.10 Wpisywanie adresu startu

Tab.11 Wyszukiwanie adresu

Tab. 12 Wyszukiwanie miernika

Po wyszukaniu miernika należy nacisnąć przycisk "stop". Następnie kliknąć na ikonę ARZ_5D_001. W tym momencie nastąpi przejście do ekranu przedstawionego na następnej stronie (Tab. 13).

UWAGA:

Jeżeli podczas wyszukiwania pod danym portem COM wyświetli się więcej niż jedna ikona ARZ_5D_001, oznacza to, że wystąpił błąd transmisji, jest złe podłączenie RS485 albo wybrany port COM jest nieprawidłowy.

4. Opis interfejsów

W Tab. 13 wyświetlane są dane pomiarowe dla instalacji 3P4W a w tab. 14 wyświetlane zostały dane dotyczące instalacji 3P3W. Na ekranie interfejsu wyświetlone są: konfiguracja systemu, dane pomiarowe, energia kwadrantowa, energia. Parametry systemu obejmują m.in.: adres, rodzaj instalacji, status VT/CT, wartość VT/CT, szybkość transmisji, właściwości portu szeregowego, tryb przechowywania danyc

Tab.14 Ekran dla instalacji 3P3W

Po naciśnięciu przycisku "Read/Setup" użytkownik może zmodyfikować następujące wartości: adres, rodzaj instalacji, VT/CT, szybkość transmisji, właściwości portu szeregowego, tryb przechowywania danych, język, data, czas, itd.

Na ekranie wyświetlania i konfiguracji taryf (Tab. 15) wykonuje się ustawienia dotyczące konfiguracji taryf i energii taryfowej. Po przejściu do trybu użytkownika można modyfikować następujące parametry: aktywacja taryfy, źródło taryfy, bieżąca taryfa, numer strefy czasowej, daty 12 stref czasowych i odpowiadające im harmonogramy (Tab. 16), aktywacja funkcji dnia specjalnego z ustawieniem daty i odpowiadającego harmonogramu (Tab.17). Ponadto można określić dokładny czas i taryfę dla 8 harmonogramów. (Tab. 17).

Ala Help						
#						
В	Measuring	Tanif	Configuration	Record	Log [Harmonic)
	Measuring	Time Zore 1 1 2 3 4 5 6 7 9 10 11 12	Configuration	Fecond Special Day Time Table 1 •	Log Tarifi Electric En Total Input Activ T1 T2 T3 T4 Total Input Read T1 T2 T3 T4 Total Dutput Ac T1 T2 T3 T4 Total Dutput Ac T1 T2 T3 T4 Total Output Re T1 T2 T3 T4 T4	Harmonic ergy es Energy kWh kWh kWh kWh kWh kwah kwah kwah kwah kwah kwah kWh kWh kWh kWh kWh kWh kWh kWh kWh kW
< i i					3010 000 4	2 72 FM
Welcom	ie to use the software		aend: 🥥	HOCEIVE S	10/10/2014	8:20 FM

Ekran wyświetlania i konfiguracji taryf

. .

TariffConfiguration		TariffConfiguration		
Time Tab	les Speciel Day	Tine Zone	Time Table	Special Day
24 hour clock, the time interval must be a multiple of 1 2 3 4 Time Table 1 1 00.00 - 1 00.00 - - 2 02.00 - - 3 04:00 - - 4 06:00 - - 5 08:00 - - 6 10:00 - - 9 16:00 - - 10 18:00 - - 11 20:00 - - 12 22:00 - -	15 minutes 5 6 7 8 des 11 11 12 12 12 12 13 13 13 13 14 14 14 14 14 14	Date Time Table 1 0141 1 2 0244 1 3 05403 1 4 0345 1 5 0346 1 6 0342 1 7 0345 1 8 0323 1 9 0329 1 10 0341 1 10 0341 1 10 0341 1 14 0442 1 15 0426 1 14 0423 1 15 0426 1 16 0501 1 18 0508 1 19 0512 1 20 0538 1	Date Time Table 21 0531 1 1 22 0501 1 1 23 0605 1 1 24 0605 1 1 25 0646 1 1 26 0620 1 1 28 0701 1 1 30 0601 1 1 30 0601 1 1 30 0601 1 1 30 0601 1 1 30 0622 1 1 30 0521 1 1 31 0522 1 1 32 0910 1 1 34 0522 1 1 38 1061 1 1 30 1141 1 1 30 1141 1 1	Dete Time Table 41 11-17 1 42 11-21 1 43 11-28 1 44 1201 1 44 1201 1 45 1203 1 46 1210 1 47 1213 1 48 1220 1 49 1224 1 40 1225 1 50 1225 1

Tab.16 Konfiguracja taryf

W interfejsie przedstawionym poniżej (Tab. 18) wyświetlona są główne ustawienia 4 portów IO: wyświetlenie statusu, zliczanie, źródło impulsu, stała impulsu, szerokość impulsu i detekcja statusu, ustawienia alarmu, ustawienia rejestru zapotrzebowania, ustawienia "zamrożenia" energii, ustawienia parametrów krzywej obciążenia.

File Help		
4		
E-∰ PC	Measuring Taritt Configuration (Record Log Harmonic
COM1	- 10 Set-	
	Conlig Status Count Pulse Sou	aurce Pulse Constant Puze Width State Detection
	101 State Detection	Energy v 1000 imp 40 ms RisingEdgeDet v
	102 State Detection - 6 Total Input Active E	Energy - 1000 imp 40 ms Faling Edge Del -
	103 Alarm Dulput	Energy - 1000 imp 40 ms Rising Edge Det -
	104 Alarm Duiput 💌 — 2 Total Duiput Active	e Energy 🛫 1000 imp 20 ms Rising Edge Det 🛫
		Read/Steup Steup
	Alam Est	
	Channel 1 Vipper Limit 300.000	V OBIS A Phase Votage
	IO Number 103 Lower Limit 10.000	V ProduceLog
	Channel Enable Hysteresis 1.000	ν
		Feed/Steup Inquity AI Steup
	Demand Record Set	
	Channel 1 - Calc Interval 1 Minutes -	Canier A Phase Active Power
	ChannelEnable Record Interval 1 Hour	
		Read/Steup Inquity Al Steup
	- Rower Errora Cot	
	Channel 1 T Becont Interval 1 Day	Carrier Total Input Active Energy
	E ChangelEnglie	
		Read/Steup Inquity AT Steup
	- Load Quive Parameters Set	
	Decoderate and the second seco	Carrier A Phare Votena
	Channel Enable	Read/Steup Inquity AT Steup
< · · >		
Welcom	to use the softwarel Send 🤒	Receive: 10/10/2014 8:20 PM 2

Tab.18 Konfiguracja parametrów

Tab.17 Konfiguracja harmonogramów

Ustawienia I/O: Zaznaczyć okienko "read/setup". Użytkownik może wybrać konfigurację 4 portów I/O: wyświetlenie statusu, zliczanie, źródło impulsu, szerokość impulsu, detekcja statusu (Tab. 19).

101 State Detection Image: Constraint of the state of the sta	Conng	Status	Count	Pulse Source		Pulse Consta	ani	Puse Wi	dth	State Detection
2 State Detection Falling Edge Detection Cotal Input Active Energy Input Active Energy I	1 State Detection	•	3	Total Input Active Energy	~	1000	imp	40	ms	Rising Edge Det 👻
D3 Alam Output 🗨 — 2 Total Input Active Energy 💽 1000 imp 40 ms Rising Edge De	02 State Detection	•	6	Total Input Active Energy	-	1000	imp	40	ms	Falling Edge Del 🔫
	03 Alaim Output	•	2	Total Input Active Energy	-	1000	imp	40	ms	Rising Edge Det 👻
104 Alam Output 💌 ————— 2 Total Output Active Energy 💌 1000 imp 20 ms Rising Edge De)4 Alarm Output	•	2	Total Output Active Energy	-	1000	imp	20	ms	Rising Edge Det 💌

Konfiguracja parametrów I/O

Ustawienia alarmu: Zaznaczyć okienko "read/setup" i wybrać żądany kanał, następnie komputer odczyta jego parametry (Tab.20). Nacisnąć przycisk "Inquiry All", aby odczytać dane z wszystkich 25 kanałów i wyświetlić wszystkie interfejsy zapytania oraz dokonać ich ustawień (Tab. 21). Nacisnąć przycisk "Setup", aby zmienić ustawienia bieżącego, pojedynczego kanału. (Tab. 150)

Alarm Set						
Channel 1 🗨	Upper Limit 300.000	V.	OBIS A Phase Voltage	-		
IO Number IO3 🔹	Lower Limit 10.000	V	Produce Log			
🗖 Channel Enable	Hysteresic 1.000	V				
			☐ Read/Steup	Inquity Al Steup	Tah	20

Zapytanie i ustawienia dotyczące alarmu pojedynczego parametru

Dr/Off	10 Number	Upper Limit		Lower Limit		Hysteresis		DBIS		Produce Log
Π1	103 💌	300.000	Y	10.000	V.	1.000	V.	A Phase Voltage	*	Г
□ 2	104 💌	300.000	v	10.000	v	1.000	v	A Phase Voltage	*	
Γ3	Unconí 💌	0.000	v	0.000	٧	0.000	v	A Phase Voltage	*	Г
Γ4	Unconfi 💌	0.000	v	0.000	٧	0.000	V.	A Phase Voltage	-	Г
Γ5	Unconfi 💌	0.000	Y	0.000	V.	0.000	٧.	A Phase Voltage	•	Г
Γ 6	Unconfi 💌	0.000	Y.	0.000	V.	0.000	v	A Phase Voltage	*	Г
Γ7	Unconí 💌	0.000	v	0.000	٧	0.000	v	A Phase Voltage	*	Г
Π 8	Unconfi 💌	0.000	v	0.000	٧	0.000	v	A Phase Voltage	-	Г
Γ9	Unconfi 💌	0.000	V.	0.000	v	0.000	v	A Phase Voltage	*	Г
F 10	Unconfi 💌	0.000	Y	0.000	V.	0.000	v	A Phase Voltage	*	Г
F 11	Unconí 💌	0.000	v	0.000	٧	0.000	v	A Phase Voltage	*	Г
□ 12	Unconí 💌	0.000	v	0.000	v	0.000	v	A Phase Voltage	-	Г
F 13	Unconfi 💌	0.000	۲.	0.000	v	0.000	v	A Phase Voltage	+	Г
□ 14	Unconfi 💌	0.000	Y.	0.000	٧.	0.000	Y	A Phase Voltage	-	Г
F 15	Unconí 💌	0.000	¥	0.000	V	0.000	V.	A Phase Voltage	× ^	5 -
F 16	Unconfi 💌	0.000	v	0.000	v	0.000	v	A Phase Voltage	-	E
F 17	Unconfi 💌	0.000	v	0.000	v	0.000	v	A Phase Voltage	-	Г
□ 18	Unconfi 💌	0.000	V.	0.000	v	0.000	V.	A Phase Voltage	*	
F 19	Unconfi 💌	0.000	Y	0.000	V	0.000	īγ.	A Phase Voltage	*	Г
□ 20	Unconí 💌	0.000	¥.	0.000	V	0.000	v	A Phase Voltage	*	Г
IT 21	Unconfi 💌	0.000	v	0.000	V	0.000	v	A Phase Voltage	-	Г
□ 22	Unconfi 💌	0.000	V.	0.000	٧	0.000	V.	A Phase Voltage	*	Г
F 23	Unconfi 💌	0.000	Y	0.000	٧	0.000	V.	A Phase Voltage	*	Г
□ 24	Unconí 💌	0.000	Y.	0.000	٦v	0.000	V.	A Phase Voltage	•	Г
F 25	Unconfi 💌	0.000	v	0.000	v	0.000	v	A Phase Voltage	-	Г

Tab. 21 Zapytanie i ustawienia dotyczące alarmu wielu parametrów

Ustawienia rejestru zapotrzebowania: zaznaczyć okienko "Read/Setup" i wybrać numer kanału. Następnie odczytane i wyświetlone zostaną parametry wybranego kanału (Tab. 22). Nacisnąć przycisk "Inquiry All", aby odczytać i wyświetlić parametry 50 kanałów z możliwością ich ustawienia (Tab. 23). Nacisnąć przycisk "Setup", aby zmienić ustawienia bieżącego, pojedynczego kanału (Tab. 22)

Demand Record Set				
Charnel 1 💌	Calc Interval 1 Min	nutes 💌	Carrier A Phase Active Power	-
🦳 Channel Enable	Record Interval 1 Ho	ur 💌		
			Inquity AI	Steup

Tab.

22 Zapytanie i ustawienia dotyczące pojedynczego rekordu zapotrzebowania

lif Canier	Record Interval	Calc Interval	On/Off	Carrier	Record Interval	Dalo Interval
1 A Phase Active Power	• 1 Hour •	1 Minutes 👻] [26	A Phase Active Power	1 Hour 💌	1 Minutes
2 A Phase Active Power	• 1 Hour •	1 Minutes 💌 💌	27	A Phase Active Power 💌	1 Hour 💌	1 Minutes 💌
3 A Phase Active Power	• 1 Hour •	1. Minutes 🔫	28	A Phase Active Power 🔹	1 Hour 💌	1 Minutes 💌
4 Total Active Power	• 1 Hour •	1 Minutes 💌	29	A Phase Active Power 💌	1 Hour 💌	1 Minutes 💌
5 A Phase Active Power	• 1 Hour •	1 Minutes 🔫] 🗆 30	A Phase Active Power 💌	1 Hour 🔻	1 Minutes 💌
6 A Phase Active Power	• 1 Hour •	1 Minutes 💌] 🗆 31	A Phase Active Power 💌	1 Hour 💌	1 Minutes 💌
7 A Phase Active Power	• 1 Hour •	1 Minutes 💌] 🗆 32	A Phase Active Power 💌	1 Hour 💌	1 Minutes 💌
8 A Phase Active Power	🔹 1 Hour 💌	1 Minutes 💌] 🗆 33	A Phase Active Power	1 Hour 💌	1 Minutes 💌
9 A Phase Active Power	• 1 Hour •	1 Minutes 🔄] 🗆 34	A Phase Active Power 🔹	1 Hour 💌	1 Minutes 💌
10 A Phase Active Power	▼ 1 Hour ▼	1 Minutes 🔄 💌] 🗆 35	A Phase Active Power 🔹	1 Hour 💌	1 Minutes 💌
11 A Phase Active Power	• 1 Hour •	1 Minutes 📼	36	A Phase Active Power 📃 💌	1 Hour 💌	1 Minutes 💌
12 A Phase Active Power	▼ 1 Hour ▼	1 Minutes 💌	37	A Phase Active Power 💌	1 Hour 💌	1 Minutes 💌
13 A Phase Active Power	• 1 Hour •	1 Minutes 💌] 🗆 38	A Phase Active Power 💌	1 Hour 💌	1 Minutes 💌
14 A Phase Active Power	• 1 Hour •	1 Minutes 💌 💌] 🗖 39	A Phase Active Power 💌	1 Hour 💌	1 Minutes 💌
15 A Phase Active Power	▼ 1 Hour ▼	1 Minutes 🔄 💌] [40	A Phase Active Power 🔹	1 Hour 💌	1 Minutes 💌
16 A Phase Active Power	▼ 1 Hour ▼	1 Minutes 🔄	[41	A Phase Active Power 💌	1 Hour 💌	1 Minutes 💽
17 A Phase Active Power	▼ 1 Hour ▼	1 Minutes 💌] □ 42	A Phase Active Power 📃 🔻	1 Hour 💌	1 Minutes 💌
18 A Phase Active Power	▼ 1 Hour ▼	1 Minutes 💌	43	A Phase Active Power 💌	1 Hour 💌	1 Minutes 💌
19 A Phase Active Power	 1 Hour 	1 Minutes 💌	44	A Phase Active Power 💌	1 Hour 💌	1 Minutes 💌
20 A Phase Active Power	• 1 Hour •	1 Minutes 💌	45	A Phase Active Power	1 Hour 💌	1 Minutes 💌
21 A Phase Active Power	• 1 Hour •	1 Minutes 💌	45	A Phase Active Power	1 Hour 💌	1 Minutes 💌
22 A Phase Active Power	• 1 Hour •	1 Minutes 💌] [47	A Phase Active Power 👻	1 Hour 💌	1 Minutes 💌
23 A Phase Active Power	▼ 1 Hour ▼	1. Minutes 🔄 💌	48	A Phase Active Power 🔹	1 Hour 💌	1 Minutes 💌
24 A Phase Active Power	▼ 1 Hour ▼	1 Minutes 👱	F 49	A Phase Active Power 💌	1 Hour 💌	1 Minutes 💌
25 A Phase Active Power	• 1 Hour •	1 Minutes 🔫	50	A Phase Active Power 👻	1 Hour 💌	1 Minutes 💌

Zapytanie i ustawienia dotyczące wielu rekordów zapotrzebowania

Ustawienia "zamrożenia energii": zaznaczyć okienko "Read/Setup" oraz wybrać numer kanału. Następnie odczytane i wyświetlone zostaną parametry wybranego kanału (Tab. 24). Nacisnąć przycisk "Inquiry All", aby odczytać i wyświetlić parametry 50 kanałów z możliwością ich ustawienia (Tab. 25). Nacisnąć przycisk "Setup", aby zmienić ustawienia bieżącego, pojedynczego kanału (Tab. 24).

Channel 1	Record Interval 1 Day	Carrier Total Input Active Energy	•
🔲 Channel Enable		Read/Steup Inquiry All	Steup

Zapytanie i ustawienia dotyczące pojedynczego parametru "zamrożenia energii"

ower fre	eze Sel				
n/Off Ca	arrier	Record Interval	0n/Off	Carrier	Record Interval
1	otal Input Active Energy	1.Day 💌	F 26	Total Input Active Energy	• 1 Day •
2 1	otal Input Active Energy 📃	1 Day 💌	□ 27	Total Input Active Energy	🔹 1 Day 💌
3 T	ofal Input Active Energy 🔄	1 Day 💌	☐ 28	Total Input Active Energy	• 1 Day •
4 T	otal Input Active Energy 📃	1 Day 💌	F 29	Total Input Active Energy	▼ 1Day ▼
5 T	ofal Input Active Energy 🔄	1 Day -	□ 3D	Total Input Active Energy	• 1 Day •
6 T	otal Input Active Energy 🔄	1 Day 🔹	F 31	Total Input Active Energy	• 1 Day •
7 T	otal Input Active Energy 📃	1 Day 💌	F 32	Total Input Active Energy	• 1 Day •
8 T	otal Input Active Energy	1 Day 💌	□ 33	Total Input Active Energy	• 1 Day •
9 T	otal Input Active Energy 🔄	1 Day 👻	□ 34	Total Input Active Energy	• 1 Day •
10 T	otal Input Active Energy 🖉	1 Day 💌	□ 35	Total Input Active Energy	• 1 Day •
11 1	ofal Input Active Energy 🚽	1 Day -	□ 36	Total Input Active Energy	• 10ay •
12 T	ofal Input Active Energy 🖉	1 Day 🔻	JT 37	Total Input Active Energy	• 10ay •
13 T	otal Input Active Energy 🖉	1.Day 🔹	∏ 3B	Total Input Active Energy	▼ 1 Day ▼
14 T	otal Input Active Energy 🖉	1 Day 🔻	F 39	Total Input Active Energy	▼ 1 Day ▼
15 T	ofal Input Active Energy 📃	1 Day 🔻	F 40	Total Input Active Energy	• 1 Day •
16 T	ofal Input Active Energy 📃	1 Day 💌	匚 41	Total Input Active Energy	• 1 Day •
17 1	ofal Input Active Energy	1 Day 💌	T 42	Total Input Active Energy	• 1 Day •
18 T	ofal Input Active Energy	1 Day -	F 43	Total Input Active Energy	• 1 Day •
19 T	of al Input Active Energy	1 Day 🔻	IT 44	Total Input Active Energy	• 1 Day •
20 T	otal Input Active Energy	1 Day 🔹	JT 45	Total Input Active Energy	• 1 Day •
21 T	otal Input Active Energy	1 Day -	F 46	Total Input Active Energy	• 1 Day •
22 T	otal Input Active Energy	1 Day 💌	F 47	Total Input Active Energy	• 1 Day •
23 T	ofal Input Active Energy	1 Day 💌	☐ 4B	Total Input Active Energy	• 1 Day •
24 T	ofal Input Active Energy	1 Day -	F 49	Total Input Active Energy	• 1 Day •
25 T	of all input Active Energy	1 Day +	F 50	Total Input Active Energy	• 1 Day •

Zapytanie i ustawienia dotyczące wielu parametrów "zamrożenia energii"

Ustawienia parametrów krzywej obciążenia: zaznaczyć okienko "Read/Setup" oraz wybrać numer kanału. Następnie odczytane i wyświetlone zostaną parametry wybranego kanału (Tab. 26). Nacisnąć przycisk "Inquiry All", aby odczytać i wyświetlić parametry 16 kanałów z możliwością ich ustawienia (Tab. 27). Nacisnąć przycisk "Setup", aby zmienić ustawienia bieżącego, pojedynczego kanału (Tab. 26).

25

- Load Curve Parameters Set			
Channel 1 💌	Record Interval 1 Minutes 💌	Carrier A Phase Voltage	•
Channel Enable		Read/Steup Inquiry All	Steep
			19

Zapytanie i ustawienia dotyczące pojedynczego parametru krzywej obciążenia

Load Cu	rve Parameters Set	
_Load 0	Curve Parameters Set	
On/Off	Carrier	Record Interval
F 1	A Phase Voltage	• 1 Minutes 💌
F 2	A Phase Voltage	- 1 Minutes 💌
Π 3	A Phase Voltage	🔹 1 Minutes 💌
□ 4	A Phase Voltage	• 1 Minutes 💌
F 5	A Phase Voltage	• 1 Minutes 💌
□ 6	A Phase Voltage	- 1 Minutes 💌
E 7	A Phase Voltage	 1 Minutes
F 8	A Phase Voltage	• 1 Minutes 💌
F 9	A Phase Voltage	• 1 Minutes 💌
E 10	A Phase Voltage	- 1 Minutes 💌
E 11	A Phase Voltage	 1 Minutes
E 12	A Phase Voltage	🔹 1 Minutes 💌
F 13	A Phase Voltage	- 1 Minutes 💌
I 14	A Phase Voltage	- 1 Minutes 💌
E 15	A Phase Voltage	 1 Minutes
F 16	A Phase Voltage	• 1 Minutes •
		Setup

Tab. 27 Zapytanie i ustawienia dotyczące wielu parametrów krzywej obciążenia

Interfejs rejestracji: nacisnąć przycisk "Update record". Następnie zostaną odczytane wszystkie zarejestrowane dane zapotrzebowania, "zamrożenia" mocy i krzywej obciążenia. Wybrać inny numer kanału, aby sprawdzić odpowiednie dla niego zarejestrowane dane. Nacisnąć przycisk "stop", aby zatrzymać odczyt (Tab. 28).

E-9 PC	Measuring	laii	Configurational	Becord	Log	Hamonic
E COM2					Update Records	Stop Read
	Total Record Total Record Ehannel	1 💌 Start Record	1 -	1 Road Data	ShowData	
	-Parket Freeze Recor Total Record	d				
	Chennel	1 💌 Start Record	1	Read Data	ShowData	Histogram
	Total Record Channel	1 💌 Start Record	1	1 Read Data	Show Data	Tirend Graph

Tab. 28 Odczyt zarejestrowanych wartości zapotrzebowania, krzywej obciążenia, "zamrożonej" mocy Nacisnąć przycisk "Read data", aby odczytać zarejestrowane dane zapotrzebowania, "zamrożonej" energii i krzywej obciążenia. Nacisnąć przycisk "Show data". Zarejestrowane

dane pokażą się na ekranie (Tab. 29). Nacisnąć przycisk "Print", aby wydrukować histogram.

Demand	Record			*
Denand	i Record			
55	Jine	Jenard	Currier	Chanzel
1	2014-08-23 0:00:00	L. 1001A	A Phane Active Power	1
				Print

Tab. 29 Ekran wyświetlania zarejestrowanych danych

Nacisnąć przycisk "Histogram" przy rejestrze zamrożenia energii, aby wyświetlić wykres rejestru energii dla ostatniego, pojedynczego kanału (Tab. 30). Nacisnąć przycisk "Print", aby wydrukować histogram.

Tab. 30 Histogram "zamrożenia" energii

Nacisnąć przycisk "Trend graph" przy rejestrze krzywej obciążenia, aby wyświetlić wykres trendu dla bieżącego kanału (Tab. 31). Nacisnąć przycisk "Print", aby wydrukować wykres.

Tab. 31 Wykres trendu krzywej obciążenia

Ekran rejestracji rekordów. Nacisnąć przycisk "Update record", aby odczytać wszystkie rekordy z rejestrów: systemowego, zdarzeń i jakości energii (Tab. 32). Użytkownik może wybrać rodzaj rejestru, który chce wyświetlić. Nacisnąć przycisk "stop read", aby zatrzymać odczyt.

File Help								
A								
PC CON1	Measuring Tariff	Configuration() Record	Log	Harmonic				
COM2 COM2 AFZ_50_001	Logs Read	C Event Log Quark	Grid 415	Update Records				
	Staff Record 1 915 Read Data Stop Read							
	SN Date	Record	Alarm Value Extr	emum 🔺				
	1 1/1/2000 12:00:00 AM	A phase voltage phase lossAlarm						
	2 1/1/2000 1 2:00:00 AM	A phase voltage phase lossAlarm						
	3 1/1/2000 1 2:00:00 AM	C phase voltage phase lossAlarm						
	4 1/1/2000 12:00:00 AM	B phase voltage phase lossAlarm						
	5 171/2000 1 2:00:00 AM	A phase voltage phase lossAlarm						
	6 17172000 1 2:00:00 AM	C phase voltage phase lossAlarm						
	7 17/02000 12:00:00 AM	A shase voltage phase loss large						
	8 1702000 12:00:00 AM	C phase voltage phase lossAlarm						
	10 1/1/2000 12:00:00 AM	B phase voltage phase loss larm						
	11 1/1/2000 12:00:00 AM	A nhace voltage phase loss larm						
	12 1/1/2000 12:00:00 AM	C nhase voltarie nhase InseAlarm						
	13 1/1/2000 12:00:00 AM	B phase voltage phase loss/larm						
	14 1/1/2000 1 2:00:00 AM	A phase voltage phase lossAlarm						
	15 1/1/2000 1 2:00:00 AM	C phase voltage phase i ossAlarm						
	16 1/1/2000 1 2:00:00 AM	B phase voltage phase lossAlarm						
	17 1/1/2000 1 2:00:00 AM	A phase voltage phase lossAlarm						
	18 1/1/2000 1 2:00:00 AM	C phase voltage phase lossAlarm						
	19 1/1/2000 12:00:00 AM	B phase voltage phase lossAlarm						
	20 1/1/2000 12:00:00 AM	A phase voltage phase lossAlarm						
	21 1/1/2000 12:00:00 AM	C phase voltage phase lossAlarm						
	22 1/1/2000 1 2:00:00 AM	B phase voltage phase lossAlarm						
	23 1/1/2000 12:00:00 AM	A phase voltage phase lossAlarm		*				
Welcome	to use the software!	Send: 🥥 🛛 Receive: 🥥	10/10/2014	8:22 FM				

Tab.32 Ekran zarejestrowanych rekordów

Ekran wyświetlania harmonicznych. Na ekranie wyświetlane są głównie wartości napięcia, kąta fazowego prądu, mocy czynnej, mocy biernej i mocy pozornej dla fundamentalnej

składowej. Całkowity współczynnik zawartości harmonicznych napięcia i prądu, zawartość harmonicznych 2-63 rzędu i kąt fazowy (Tab.33).

Mea	suring	γ	Tariff	<u> </u>	Configura	ation	F	Record	\neg	Lop	<u> </u>	Hau
		-										
거 - Funda	mental H ar	manie —								_		
	itana V	. <u> </u>	0.0	0	n A	Active Power	- kw		00	0.000	0.000	L otal 0.000
Ar	ide 1	0.0	0.0	ũ	0 8	Reactive Pov	ver kva	0.00	10	0.000	0.000	0.000
a a	illent A	0.00	0.00	0.0	10 Å	Apparent Pol	ver kVA	0.00	00	0.000	0.000	0.000
Ar	gle '	0.0	0.0	0.	D							
Total	Harmonic C	onteni										
- - `	'okage —		Α	8	С		Current			A	8	С
	Total TH	D-F 🍣	D. D	D. D	0.0		Total	THD-F	3	0.0	D.O	D.O
	THD-F O	dd 🏻 🎖	D. D	D. D	0.0		THD	F Odd	%	0.0	0.0	0.0
	THD-F E	ven %	D D	D. D	0.0		THD	FEven	2	0.0	0.0	D.O
	Total TH	D-R 🍣	D. D	D. D	D.O		Total	THD-R	*	0.0	D.O	D.O
	THD-R D	ldd 🌾	D. D	D. D	D.O		THD	R Odd	*	0.0	D.O	D.O
	THD-R E	iven %	0.0	0.0	0.0		THD	REven	2	0.0	0.0	0.0
Harmo	nic(2-63)		Contants Of	Harmonic	(%)			A	nde Of H	armonic!")		
Num	UA	UB	UC	IA	IB	IC	UA	VB	UC	IA	IB	IC I
DC	D.0	0.0	0.0	0.0	0.0	0.0				_		
2	D.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00
3	D.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0 D	D.0 D	D.0 D	D.00	0.00
4	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00
5	D.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	D.0 D	D.0 D	D.00	0.00
6	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00
7	D.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	D.0 D	D.0 D	D.00	0.00
8	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	D.0 D	D.00	0.00
9	D.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	D.0 D	D.0 D	0.00	0.00
10	D.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	D.0 D	D.0 D	D.00	0.00
11	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	D.0 D	0.00	0.00
12	nn	0.0	0.0	0.0	0.0	0.0	0.0.0	0.0.0	nnn	nnn	n oo	0.00

Tab. 33 Ekran harmonicznych

Ekran administracji: Nacisnąć przycisk "Admin Login" (Tab. 34) oraz wpisać hasło (Tab. 35). Następnie nacisnąć przycisk "confirm", aby przejść do kolejnego ekranu. Nacisnąć przycisk "setup/read", aby zmienić konfigurację lub wyczyścić dane zapisane w mierniku (dane dotyczące czasu wyłączenia, zliczania IO, energii, rejestracji i jej dat).

Tab.35 Ekran wpisywania hasła

10	·		~			
COM1	Neasuring	Iariff	Configuration	Record	Log	Harnonio
₩ CON2	Clear Operation Fower outages tim 101 Counter 103 Counter 103 Counter 104 Counter Active Energy Essetive Energy Quadrant Energy Tariff Electric E All Energy Desand Channel All Energy Esset Channel All Energy Esset Channel All Energy Event Channel All Load Curve Channel All Load Curve Channel All System Log Event Log Fower Grid Qualit All of The Above Steap	inergy inel 1 - thanel thanel y Log Data				
m						

Tab. 36 Ekran administratora

III. Komunikacja

1. Protokół komunikacji

Protokół MODBUS RTU, format danych: 1 bit startu + 8 bitów danych + bit stopu.

2. Format komend RTU i przykłady

Przy komunikacji zastosowany jest protokół kodów Modbus: **03H** – odczyt pojedynczych i kolejnych rejestrów **06H** – odczyt pojedynczego rejestru **10H** – odczyt kolejnych rejestrów

Format komend RTU i przykład **03H** – odczyt pojedynczych i kolejnych rejestrów (max. 40 rejestrów) Wysyłanie komend:

Nazwa	Byte (Bajt)	Przykład
Adres miernika	1	01H
Numer funkcji	2	03H
Adres (High Byte)	3	01H
Adres (Low Byte)	4	02H
Numer bajtów (N) (High Byte)	5	00H
Numer bajtów (N) (Low Byte)	6	02H
CRC (High Byte)	7	CRC (H)
CRC (Low Byte)	8	CRC (L)

Uwaga: miernik o adresie 01H wyśle dwa kolejne słowa (WORDS) od adresu początkowego 0102H.

Odbieranie komend:

Nazwa	Byte (Bajt)	Przykład
Adres miernika	1	01H
Numer funkcji	2	03H
Numer bajtów (2N)	3	04H
Data1 (High)	4	00H
Data1 (Low)	5	01H
Data2 (High)	6	00H
Data2 (Low)	7	01H
CRC (High Byte)	8	CRC (H)
CRC (Low Byte)	9	CRC (L)

Uwaga: miernik o adresie 01H otrzyma dwa kolejne słowa (WORDS) od adresu początkowego 0102H

06H – zapis pojedynczego rejestru

Wysyłanie komend:		
Nazwa	Byte (Bajt)	Przykład
Adres miernika	1	01H
Numer funkcji	2	06H
Adres (High Byte)	3	01H
Adres (Low Byte)	4	02H
Data (High Byte)	5	00H
Data (Low Byte)	6	01H
CRC (High Byte)	7	CRC (H)
CRC (Low Byte)	8	CRC (L)

Uwaga: Zapis 1 słowa (WORD) danych w adresie początkowym rejestru 0102H adresu 01H miernika.

Odbieranie komend:

Nazwa	Byte (Bajt)	Przykład
Adres miernika	1	01H
Numer funkcji	2	06H
Adres (High Byte)	3	01H
Adres (Low Byte)	4	02H
Data (High Byte)	5	00H
Data (Low Byte)	6	01H
CRC (High Byte)	7	CRC (H)
CRC (Low Byte)	8	CRC (L)

Uwaga: wysyłanie i odbieranie tej samej zawartości

10H – Zapis kolejnych rejestrów

Wysyłanie komend:

Nazwa	Byte (Bajt)	Przykład
Adres miernika	1	01H
Numer funkcji	2	10H
Adres (High Byte)	3	01H
Adres (Low Byte)	4	02H
Numer bajtów (N) (High Byte)	5	00H
Numer bajtów (N) (Low Byte)	6	02H
Numer bajtu (2N)	7	04H
Data1 (High Byte)	8	00H
Data1 (Low Byte)	9	01H
Data2 (High Byte)	10	00H
Data2 (Low Byte)	11	01H
CRC (High Byte)	12	CRC (H)
CRC (Low Byte)	13	CRC (L)

Uwaga: Zapis 2 słów (WORD) danych w 2 rejestrach z adresem początkowym 0102H adresu 01H miernika.

Odbieranie komend:

Nazwa	Byte (Bajt)	Przykład
Adres miernika	1	01H
Numer funkcji	2	10H
Adres (High Byte)	3	01H
Adres (Low Byte)	4	00H
Data (High Byte)	5	00H
Data (Low Byte)	6	02H
CRC (High Byte)	7	CRC (H)
CRC (Low Byte)	8	CRC (L)

3. Format danych

Dla parametrów dotyczących energii w użyciu są 4 rejestry:

wartość rzeczywista = (liczba całkowita wysokiego bajtu * 65536 + liczba całkowita niskiego bajtu) + (liczba dziesiętna wysokiego bajtu *65536 + liczba dziesiętna niskiego bajtu) /10000000 Np. Całkowita liczba wysokiego bajtu = 0000H=0 Całkowita liczba niskiego bajtu = 0001H=1 Liczba dziesiętnego wysokiego bajtu = 0165H=357

Liczba dziesiętna niskiego bajtu = EC15H=60437

Po przeliczeniu wartość rzeczywista = (0*65536 +1) + (357*65536 + 60437)/ 10000000 = 1,23456789MWh = 1234,56789kWh

Data w postaci kodu BCD

Uwaga: Kalkulacja energii (konwersja wartości rejestru na system dziesiętny) do wartości rzeczywistej, następnie kalkulacja z użyciem powyższego wzoru.

Numer	Parametr	Format dany	Kierunkowość	Jednostka	Opis
		(system			
		dziesiętny)			
1	Napięcie	999,9		V	<1000V
2	Prąd	79,99		А	<80A
3	Współczynnik m	±1,000	kierunkowy		-1,000~1,000
4	Częstotliwość	64,99		Hz	45,00~65,00
5	Moc czynna	±999999	kierunkowy	MW	
6	Moc bierna	±999999	kierunkowy	MVAr	
7	Moc pozorna	±999999		MVA	
10	Energia czynna	999999999	kierunkowy	MWh	
11	Energia bierna	999999999	kierunkowy	MVArh	
12	Kąt fazowy	0,0°~359,9°	kierunkowy		
13	Harmoniczne	0~100%			
	(%)				
14	Harmoniczne	0~100%			
	napięcia (%)				

Format danych energii:

Komenda MODBUS	Funkcje	Opis
0x03	Odczyt wielu rejestrów	Odczyt/zapis max 40 rejest
0x10	Zapis wielu rejestrów	
0x06	Zapis pojedynczego rejestru	
[Z uwagi na możliwość zaistnienia nieścisłości w tłumaczeniu tabele parametrów zostają zachowane w wersji oryginalnej.]

Register no. (HEX)	Read/ write	Туре	Description	Remark
1000~1001	RO	unsigned	Software version	1000 register: Major version no. 1001 register: Minor version no.
1002~1003	RO	unsigned	Hardware version ¹	1002 register: Major version no. 1003 register: Minor version no.
1004~1005	RO	unsigned	Running time 1	Unit: second
1006~1008			Remain	
1009	RO	unsigned	PT/CT enable ¹	0: not use PT/CT; 1: use
100A	RO	unsigned	Communication ¹	0: ModBus; 1: MBus
100B	RW	unsigned	Wiring mode ³	0: 3P4W 1: 3P3W 2: 1P2W
100C~100D	RW	float	PT ³	
100E~100F	RW	float	CT ³	
1010	RW	unsigned	Voltage range ¹	
1011	RW	unsigned	Current range ¹	
1012	RW	unsigned	Language ³	0: Chinese 1. English
1013	RW	unsigned	ModBus communication address ³	1~247
1014	RW	unsigned	Baud rate ³	Check table 1
1015	RW	unsigned	Transmission format ³	Check table 2
1016	RW	unsigned	Storage mode ³	0: Linear storage 1: Cycle storage
1017	RW	unsigned	IOdirection selection ¹	4 IO ports input output direction selection: IO 1/2 in a group, IO3/4 in a group, 2 IO ports in each group has the same direction, High byte controls IO 3/4, low byte controls IO 1/2. In each byte, 0 means configuring the 2 IO ports as output; 1 means input; 2 means without this function.
1018~101A	RW	BCD	present time3	BCD code, pls check table 3.
101B	wo	unsigned	Administrator password ²	
101C	WO	unsigned	User password ²	

4. Rejestr parametrów systemowych

¹ Informacje mogą zostać zapisane tylko w trybie fabrycznym niedostępnym dla użytkownika

²Wpisać poprawne stare hasło, aby przejść do trybu administratora/użytkownika, następnie wykonać operację specjalnego zapisu w odpowiadającym trybie. Super hasło administratora to: 0726 (podobnie jak w przypadku innych produktów) ³ Dane mogą zostać zmienione po przejściu do trybu użytkownika, administratora lub fabrycznego

Tab.1 Tabela odpowiadających szybkości transmisji

Data	Corresponded baud rate (bps)
1	2400
2	4800
3	9600
4	19200
5	38400

Tab.	2 -	Tabela	odi	oowia	idaia	acv	/ch	tran	smis	ii
	_		~~~	000	- a a j e	2~3	U		0	J.

Data	Trans. format	Description
0	8N1	1start bit, 8 data bits, 0 parity bit, 1 stop bit
1	8N2	1start bit, 8 data bits, 0 parity bit, 2 stop bits
2	8E1	1start bit, 8 data bits, 1 even parity bit, 1 stop bit
3	801	1start bit, 8 data bits, 0 odd parity bit, 1 stop bit

Tab. 3 Format czasu

0		1	2	3	4	5
yea	ar	month	day	hour	minute	second

Bajt 0 jest pierwszym bajtem odbierania.

5. Rejestr wartości chwilowych z pomiarów elektrycznych

Rejestr główny

Register (HEX)	Read/ write	Туре	Des	cription	Remark
2000~2001	RO	float	L1-N	Dises	
2002~2003	RO	float	L2-N	Phase	
2004~2005	RO	float	L3-N	vonage	Unit: V
2006~2007	RO	float	L1-L2		
2008~2009	RO	float	L1-L3	Line voltage	
200A~200B	RO	float	L3-L2		
200C~200D	RO	float	L1		
200E~200F	RO	float	L2	Current	T Traite A
2010~2011	RO	float	L3	Current	Omt. A
2012~2013	RO	float	Ν	I	
2014~2015	RO	float	L1	Actions	
2016~2017	RO	float	L2	Acuve	Unit: w
2018~2019	RO	float	L3	power	

201A~201B	RO	float	Total		
201C~201D	RO	float	L1		
201E~201F	RO	float	L2	Reactive	Theit was
2020~2021	RO	float	L3	power	Onit. Var
2022~2023	RO	float	Total		
2024~2025	RO	float	L1		
2026~2027	RO	float	L2	Apparent	TT-:
2028~2029	RO	float	L3	power	Onit. VA
202A~202B	RO	float	Total		
202C~202D	RO	float	L1		
202E~202F	RO	float	L2	Power	
2030~2031	RO	float	L3	factor	
2032~2033	RO	float	Total		
2034~2035	RO	float	Frequency		Unit: Hz
2036	RO	unsigned	Power qua	adrant	0~3:1-4 quadrant

Rejestr drugorzędny

Register	Read/	Туре	Description		Remark
(HEX)	BO	flaat	TIN	1	
2100~2101	KO	noat	LI-N	Phase	
2102~2103	RO	float	L2-N	voltage	
2104~2105	RO	float	L3-N	· · · · · · · · · · · · · · · · · · ·	Unit: V
2106~2107	RO	float	L1-L2		
2108~2109	RO	float	L1-L3	Line voltage	
210A~210B	RO	float	L3-L2		
210C~210D	RO	float	L1		
210E~210F	RO	float	L2	Current	Theit: A
2110~2111	RO	float	L3	Current	Unit. A
2112~2113	RO	float	Ν		
2114~2115	RO	float	L1		
2116~2117	RO	float	L2	Active	T Init: m
2118~2119	RO	float	L3	power	Chit. w
211A~211B	RO	float	Total		
211C~211D	RO	float	L1		
211E~211F	RO	float	L2	Reactive	Linit: war
2120~2121	RO	float	L3	power	Cint. Var
2122~2123	RO	float	Total		
2124~2125	RO	float	L1		
2126~2127	RO	float	L2	Apparent	That: MA
2128~2129	RO	float	L3	power	UIIII. VA
212A~212B	RO	float	Total		

6. Rejestr harmonicznych

Register (HEX)	Read/ write	Туре	De	Remark	
3000~3001	RO	float	L1 amplitude		
3002~3003	RO	Float	L1 phase angle	1	
3004~3005	RO	float	L2 amplitude		
3006~3007	RO	Float	L2 phase angle	Voltage fundamental	
3008~3009	RO	float	L3amplitude	1	
300A~300B	RO	Float	L3phase angle	1	
300C~300D	RO	float	L1 amplitude		
300E~300F	RO	Float	L1 phase angle	1	
3010~3011	RO	float	L2 amplitude		
3012~3013	RO	Float	L2 phase angle	Current fundamental	
3014~3015	RO	float	L3 amplitude		
3015~3017	RO	Float	L3 phase angle	1	
3018~3019	RO	float	L1		
301A~301B	RO	float	L2	Fundamental active	TT-ite
301C~301D	RO	float	L3	power	Omi. w
301E~301F	RO	float	Total		
3020~3021	RO	float	L1		
3022~3023	RO	float	L2	Fundamental reactive	TT
3024~3025	RO	float	L3	power	Unit: var
3026~3027	RO	float	Total		
3028~3029	RO	float	L1		
302A~302B	RO	float	L2	Fundamental apparent	TT.:: 174
302C~302D	RO	float	L3	power	Unit: VA
302E~302F	RO	float	Total		
3030	RO	unsigned	L1	Voltago hormonio total	
3031	RO	unsigned	L2	content F	
3032	RO	unsigned	L3	coment -1	
3033	RO	unsigned	L1	Valtage odd harmonia	
3034	RO	unsigned	L2	total content. E	
3035	RO	unsigned	L3	total content -r	
3036	RO	unsigned	L1	Voltage even	Contant
3037	RO	unsigned	L2	harmonic total content	resolution
3038	RO	unsigned	L3	-F	0.001
3039	RO	unsigned	L1	Voltage harmonic total	0.001
303A	RO	unsigned	L2	content _R	
303B	RO	unsigned	L3	content -re	
303C	RO	unsigned	L1	Voltage odd harmonic	
303D	RO	unsigned	L2	total content _R	
303E	RO	unsigned	L3	total content -IC	
303F	RO	unsigned	L1	Voltage even	

Register	Read/	т	D	D I		
(HEX)	write	Type	Des	Description		
3040	RO	unsigned	L2 harmonic total content			
3041	RO	unsigned	L3	-R		
3042	RO	unsigned	L1	Commenting		
3043	RO	unsigned	L2	total content. E		
3044	RO	unsigned	L3	total content -r		
3045	RO	unsigned	L1	Current odd hermonie		
3046	RO	unsigned	L2	total content -F		
3047	RO	unsigned	L3	total content -1		
3048	RO	unsigned	L1	Current even		
3049	RO	unsigned	L2	harmonic total content		
304A	RO	unsigned	L3	-F		
304B	RO	unsigned	L1	Correct barmania		
304C	RO	unsigned	L2	total content. P		
304D	RO	unsigned	L3	total content -K		
304E	RO	unsigned	L1	Current odd harmonia		
304F	RO	unsigned	L2	Current odd narmonic		
3050	RO	unsigned	L3	total content -IC		
3051	RO	unsigned	L1	Current even		
3052	RO	unsigned	L2	harmonic total content		
3053	RO	unsigned	L3	-R		
3054	RO	unsigned	DC amplitude			
5054	100	unsigned	content			
3055	RO	unsigned	remain			
3056	RO	unsigned	2 nd harmonic			
			content			
3057	RO	unsigned	2 nd harmonic	Every harmonic of		
			phase angle	Voltage L1	Content	
					resolution:	
30D0	RO	unsigned	63 rd harmonic		0.001	
			content		Phase angle	
30D1	RO	unsigned	63 ^{ra} harmonic		resolution:	
			phase angle		0.01degree	
30D2~314F	RO	unsigned	Same format as	Voltage L2 harmonic		
			above			
3150~31CD	RO	unsigned	Format ibid	Voltage L3 harmonic		
31CE~324B	RO	unsigned	Format ibid	Current L1harmonic		
324C~32C9	RO	unsigned	Format ibid	Current L2 harmonic		
32CA~3347	RO	unsigned	Format ibid	Current L3 harmonic		

7. Rejestr energii

Register (HEX)	Read/ write	Туре	:	Description	Remark
4000~4003	RO	unsigned	L1		
4004~4007	RO	unsigned	L2	Active input	
4008~400B	RO	unsigned	L3	energy	
400C~400F	RO	unsigned	Total		
4010~4013	RO	unsigned	L1		-
4014~4017	RO	unsigned	L2	Active output	Linit: 0.0011/Wh
4018~401B	RO	unsigned	L3	energy	Chit. 0.001k.wh
401C~401F	RO	unsigned	Total		
4020~4023	RO	signed	L1		*
4024~4027	RO	signed	L2	Not option on our	
4028~402B	RO	signed	L3	Net active energy	
402C~402F	RO	signed	Total		
4030~4033	RO	unsigned	L1		
4034~4037	RO	unsigned	L2	Reactive input	
4038~403B	RO	unsigned	L3	energy	
403C~403F	RO	unsigned	Total		
4040~4043	RO	unsigned	L1		
4044~4047	RO	unsigned	L2	Reactive output	Unit: 0.001Krach
4048~404B	RO	unsigned	L3	energy	Cint. 0.001Kvan
404C~404F	RO	unsigned	Total		
4050~4053	RO	signed	L1		
4054~4057	RO	signed	L2	Net reactive	
4058~405B	RO	signed	L3	energy	
405C~405F	RO	signed	Total		
4060~4063	RO	unsigned	L1		
4064~4067	RO	unsigned	L2		TI
4068~406B	RO	unsigned	L3	Apparent energy	Unit: 0.001kVAn
406C~406F	RO	unsigned	Total		

8. Rejestr ustawień wielotaryfowości

Register (HEX)	Read/ write	Туре	Description	Remark
5000	RW	unsigned	Tariff ON/OFF	0: Tariff OFF 1: Tariff ON
5001	RW	unsigned	Tariff source	0: Clock (calendar) 1: communication2: IO1/2input* 3: IO3/4 input*
5002	RW	unsigned	Present tariff	0~3: Tariff1-4 Only valid when tariff source set to "communication"
5003	RW	unsigned	Time zone numbers	1~12

Register	Register Read/		D		
(HEX)	write	Type	Description	Remark	
5004	RW	BCD	Time zone 1		
5005	RW	BCD	Time zone 2		
5006	RW	BCD	Time zone 3		
5007	RW	BCD	Time zone 4	Time zone table (BCD code)	
5008	RW	BCD	Time zone 5	0101 ~ 1231(Jan. 1 st ~ Dec.	
5009	RW	BCD	Time zone 6	31 st)	
500A	RW	BCD	Time zone 7	The day before start time zone	
500B	RW	BCD	Time zone 8	can be the end date of last time	
500C	RW	BCD	Time zone 9	zone.	
500D	RW	BCD	Time zone 10		
500E	RW	BCD	Time zone 11		
500F	RW	BCD	Time zone 12		
5010	RW	unsigned	Time zone 1 time table		
5011	RW	unsigned	Time zone 2 time table		
5012	RW	unsigned	Time zone 3 time table		
5013	RW	unsigned	Time zone 4 time table		
5014	RW	unsigned	Time zone 5 time table		
5015	RW	unsigned	Time zone 6 time table	0 7 6	
5016	RW	unsigned	Time zone 7 time table	$0 \sim 7$: time table $1 \sim \text{time table 8}$	
5017	RW	unsigned	Time zone 8 time table		
5018	RW	unsigned	Time zone 9 time table		
5019	RW	unsigned	Time zone 10 time table		
501A	RW	unsigned	Time zone 11 time table		
501B	RW	unsigned	Time zone 12 time table		
501C	RW	BCD	Time interval1		
501D	RW	BCD	Time interval 2		
501E	RW	BCD	Time interval 3		
501F	RW	BCD	Time interval 4		
5020	RW	BCD	Time interval 5		
5021	RW	BCD	Time interval 6	Time table 1 (BCD code)	
5022	RW	BCD	Time interval 7	0000 ~ 2359 (0 : 0 ~ 23 : 59)	
5023	RW	BCD	Time interval 8		
5024	RW	BCD	Time interval 9		
5025	RW	BCD	Time interval 10		
5026	RW	BCD	Time interval 11]	
5027	RW	BCD	Time interval 12		
5028~5033	RW		Time table 2	As same as table1	
5034~503F	RW		Time table 3	As same as table 1	
5040~504B	RW		Time table 4	As same as table 1	
504C~5057	RW		Time table 5	As same as table 1	
5058~5063	RW		Time table 6	As same as table 1	

Register	Read/	-			
(HEX)	write	Туре	Description	Remark	
5064~506F	RW		Time table 7	As same as table 1	
5070~507B	RW		Time table 8	As same as table 1	
507C	RW	unsigned	Time interval 1tariff		
507D	RW	unsigned	Time interval 2 tariff		
507E	RW	unsigned	Time interval 3 tariff		
507F	RW	unsigned	Time interval 4 tariff	T	
5080	RW	unsigned	Time interval 5 tariff	0 T1	
5081	RW	unsigned	Time interval 6 tariff	0: 11 1. T2	
5082	RW	unsigned	Time interval7 tariff	1: 12	
5083	RW	unsigned	Time interval 8 tariff	2: 15	
5084	RW	unsigned	Time interval 9 tariff	5: 14	
5085	RW	unsigned	Time interval 10 tariff		
5086	RW	unsigned	Time interval 11 tariff		
5087	RW	unsigned	Time interval 12 tariff		
5088~5093	RW	unsigned	Time table 2 tariff	As same as time table 1 tariff	
5094~509F	RW	unsigned	Time table 3 tariff	As same as time table 1 tariff	
50A0~50A	DW	unsigned	Time table 4 tariff	As some as time table 1 tariff	
В	Kw		Time table 4 tarin	As same as time table 1 tarm	
50AC~50B	RW	unsigned	Time table 5 tariff	As same as time table 1 tariff	
7			TT:		
50B8~50C3	RW	unsigned	Time table 6 tariff	As same as time table 1 tariff	
50C4~50CF	RW	unsigned	Time table 7 tariff	As same as time table 1 tariff	
50D0~50D	RW	unsigned	Time table 8 tariff	As same as time table 1 tariff	
В		DOD	a :		
SODC	RW	BCD	Special day1	0101 ~ 1231(BCD code)	
60DD				MSB: 0: OFF; 1: ON	
2000	RW	unsigned	Special day Itime table	LSB: $0 \sim 7$, time table $1 \sim \text{time}$	
	DUV			table 8	
	KW	DCD	0 14 00		
513E	RW	BCD	Special day 50	0101 ~ 1231 (BCD code)	
			Special day 50 time	MSB: 0: OFF; 1: ON	
513F	RW	unsigned	table	LSB: $0 \sim 7$, time table $1 \sim \text{time}$	
				table 8	

Uwagi: Zapis w powyższej grupie jest możliwy tylko w trybie użytkownika, administratora lub fabrycznym.

* Przed ustawieniem portu IO jako źródła taryfy należy upewnić się, czy odpowiadający mu port ma status "nieskonfigurowany" lub "źródło taryfy". Jeśli odpowiadający port "IO" ma status "nieskonfigurowany", w trakcie ustawień portu IO jako źródła taryfy, 2 funkcje odpowiadających portów (6000~6001 lub 6002~6003) zostaną zapisane jako "wejście źródła taryfy".

9. Rejestr energii taryfowej

Register	Read/wr	Туре	1	Description	Remark
(HEX)	ite			-	
5300~5303	RO	unsigned	T1		
5304~5307	RO	unsigned	T2	Total input active	
5308~530B	RO	unsigned	T3	energy	
530C~530F	RO	unsigned	T4		Livit: 0.0011-Wh
5310~5313	RO	unsigned	T1		UIII. 0.001KWII
5314~5317	RO	unsigned	T2	Total output	
5318~531B	RO	unsigned	T3	active energy	
531C~531F	RO	unsigned	T4		
5320~5323	RO	unsigned	T1		
5324~5327	RO	unsigned	T2	Total input	
5328~532B	RO	unsigned	T3	reactive energy	
532C~532F	RO	unsigned	T4		Unit: 0.001 Krunch
5330~5333	RO	unsigned	T1		Oliti. 0.001Kvali
5334~5337	RO	unsigned	T2	Total output	
5338~533B	RO	unsigned	T3	reactive energy	
533C~533F	RO	unsigned	T4		

10. Rejestr energii kwadrantowej

Register (HEX)	Read/ write	Туре	Description	Remark
5400~5403	RO	signed	Quadrant 1 reactive energy	
5404~5407	RO	signed	Quadrant 2 reactive energy	
5408~540B	RO	signed	Quadrant 3 reactive energy	
540C~540F	RO	signed	Quadrant 4 reactive energy	Unit: 0.001Krmsh
5410~5413	RO	signed	Quadrant 1 active energy	Unit. 0.001Kvain
5414~5417	RO	signed	Quadrant 2 active energy	
5418~541B	RO	signed	Quadrant 3 active energy	
541C~541F	RO	signed	Quadrant 4 active energy	

11. Rejestr parametrów IO

Register	Read/	Туре	Description	Remark		
(HEX)	write		-			
6000	RW	unsigned	IOlfunction	0: not configure IO port function		
6001	RW	unsigned	IO2function	1~4:1: pulse output; 2: Alarm output		
6002	RW	unsigned	IO3 function	3: tariff source	e input 4: state action	
6003	RW	unsigned	IO4 function	input		
6004	RO	unsigned	IO1 state			
6005	RO	unsigned	IO2 state	0: disconnect: 1: close		
6006	RO	unsigned	IO3 state	o. disconnect, i	. crose	
6007	RO	unsigned	IO4 state			
6008	RW	unsigned	IO1 count	A1	• • • • • • • • • • • • • • • • • • •	
6009	RW	unsigned	IO2 count	Alarm output/ s	an IO function abound,	
600A	RW	unsigned	IO3 count	It will clear wh	en IO function changed.	
600B	RW	unsigned	IO4 count			
6000	DW	unsigned	IO1mulas courses	0~3, check		
0000	KW	unsigned	101puise source	table 4	Only valid when	
600D	RW	unsigned	IO1 pulse constant	1~9999imp	setting pulse output.	
600E	RW	unsigned	IO1 pulse width	10~990ms		
				0: inspect rising edge 1: inspect falling		
600F	RW	unsigned	IO1state action	edge		
				Only valid whe	n state actioninput.	
6010	DW	unsigned	IO) entre concer	0~3, check		
0010	KW	unsigned	102 puise source	table 4	Only valid when IO	
6011	RW	unsigned	IO2pulse constant	1~9999imp	setting is pulse output.	
6012	RW	unsigned	IO2 pulse width	10~990ms		
				0: inspect rising	g edge 1: inspect falling	
6013	RW	unsigned	IO2stateinspection	edge		
				Only valid whe	n state actioninput.	
6014	DW	unsigned	IO2 cultos coursos	0~3, check		
0014	KW	unsigned	105 puise source	table 4	I Only valid when IO	
6015	RW	unsigned	IO3 pulse constant	1~9999imp	setting is pulse output.	
6016	RW	unsigned	IO3 pulse width	10~990ms		
				0: inspect rising	gedge 1: inspect falling	
6017	RW	unsigned	IO3 state action	edge		
				Only valid whe	n state action input.	
6010	DW		IO4 miles serves	0~3, check		
0018	ĸw	unsigned	104 puise source	table 4	Only valid when IO	
6019	RW	unsigned	IO4 pulse constant	1~9999imp	setting is pulse output.	
601A	RW	unsigned	IO4 pulse width	10~990ms		
				0: inspect rising	g edge 1: inspect falling	
601B	RW	unsigned	IO4 state action	edge	-	
		0		Only valid whe	n state action input.	

Uwaga: Rejestr w powyższej grupie może być zapisany tylko w trybie użytkownika, administratora lub fabrycznym.

Tab. 4 Jeśli ustawieniem IO jest wyjście impulsowe, odpowiadające źródła impulsu są następujące:

	J (
Data	Content
0	Input active total energy
1	Output active total energy
2	Input reactive total energy
3	Output reactive total energy

Tab.5 Jeśli ustawieniem IO jest źródło taryfy, odpowiadające źródła impulsu są następujące:

IO3	IO4	Tariff
0	0	T1
0	1	T2
1	0	T3
1	1	T4

12. Rejestr parametrów alarmu

Regis ter (HE X)	Read/ write	Туре	Description	Remark
7000	RW	unsigned	To be operated channel no.	1~25
7001	RW	unsigned	Channel enable switch	0: close channel; 1: start channel
7002	RW	unsigned	OBIS	Check meter 6
7003	RW	unsigned	Corresponded IO port	0: not configure 1~4: IO1~IO4
7004	RW	unsigned	Whether generate log	0: close log; 1: generate log
7005	RW	float		
~700			Upper limit	
6				For voltage type alarm, unit is V 对
7007	RW	float	Lower limit (only valid	For current type alarm, unit is A
~700			when OBIS set to Voltage.)	For active power type, unit is W
8			when ODIS set to voltage)	For reactive power type, unit isvar
7009	RW	float		For apparent power type, unit isVA
~700			Return difference	
Α				

Uwaga: Rejestry 7001~700A mogą zostać zapisane w trybie użytkownika, administratora i fabrycznym.

Tab. 6 Opcje OBIS dla kanału alarmu

N 0.	OBIS	No.	OBIS	No.	OBIS
0	Phase A voltage	14	Total reactive power	28	Phase C voltage total harmonic distortion
1	Phase B voltage	15	Phase A reactive power		
2	Phase C voltage	16	Phase B reactive power		
3	Phase AB voltage	17	Phase C reactive power		
4	Phase BC voltage	18	Total apparent power		
5	Phase AC voltage	19	Phase A apparent power		
6	Phase A current	20	Phase B apparent power		
7	Phase B current	21	Phase C apparent power		
8	Phase C current	22	Total power factor		
9	Neutral current	23	Phase A power factor		
10	Total active power	24	Phase B power factor		
11	Phase A active power	25	Phase C power factor		
12	Phase B active power	26	Phase A voltage total harmonic distortion		
13	Phase C active power	27	Phase B voltage total harmonic distortion		

No.	OBIS	1P2W	3P3W	3P4W
0	Phase A voltage	~		~
1	Phase B voltage			~
2	Phase C voltage			~
3	Phase AB voltage		~	~
4	Phase BC voltage		~	~
5	Phase AC voltage		~	~
6	Phase A current	~	~	~
7	Phase B current		~	~
8	Phase C current		~	~
9	Neutral current			~
10	Total active power		~	~
11	Phase A active power	~	~	~
12	Phase B active power			~

13	Phase C active power		~	~
14	Total reactive power		~	~
15	Phase A reactive power	~	~	~
16	Phase B reactive power			~
17	Phase C reactive power		~	~
18	Total apparent power		~	~
19	Phase A apparent power	~	~	~
20	Phase B apparent power			~
21	Phase C apparent power		~	~
22	Total power factor		~	~
23	Phase A power factor	~	~	~
24	Phase B power factor			~
25	Phase C power factor		~	~
26	PhaseA voltage total harmonic distortion	~	~	~
27	Phase B voltage total harmonic distortion		~	~
28	Phase C voltage total harmonic distortion		~	~

13. Rejestr ustawień zapotrzebowania i rejestracji

Register (HEX)	Read/ write	Туре	Description	Remark
8000	RW	unsigned	To be operated channel no.	1~50
8001	RW	unsigned	Channel enable switch	0: close the channel 1: start the channel
8002	RW	unsigned	Carrier	Check table 7
8003	RW	unsigned	Calculating interval	Check table 8
8004	RW	unsigned	Record interval	Check table 9
8005	RO	unsigned	Channel records total numbers	0~200 0: no record 1~200: records total numbers
8006	RW	unsigned	Start item	1~200
8007	RO	unsigned	read	

Uwaga: Rejestry 8001~8004 mogą zostać zapisane w trybie użytkownika, administratora i fabrycznym.

Kroki do odczytu rejestru zapotrzebowania:

- 1. Zapis: "to be operated channel no."
- 2. Odczyt: "channel records total number"

3. Zapis: "Start item", numer domyślny dla mocy to 1, "item 1" oznacza najnowszy rekord.

4. Wysłać komendę "read' (Modbus), wpisać długość w bajtach, która ma być odczytana w postaci N*8 (N odnosi się do ilości N rekordów zapotrzebowania, które mają być odczytane , N≤15. Długość jednego rekordu to 16 bajtów (szczegóły w Tab. 4)

5. Po zakończeniu "read", rejestr "start item" zostanie zaktualizowany do następnego nieodczytanego rekordu. Użytkownik może powtórzyć krok 4, aby realizować stały odczyt, bez potrzeby aktualizacji "start item".

Tab. 7 Zapotrzebowanie

No.	Demand name	1P2W	3P3W	3P4W
9	Phase A active power	~	~	~
10	Phase B active power			~
11	Phase C active power		*	~
12	Total active power		*	~
13	Phase A reactive power	~	1	~
14	Phase B reactive power			*
15	Phase C reactive power		۲	*
16	Total reactive power		>	*
17	Phase A apparent power	~	۲	*
18	Phase B apparent power			~
19	Phase C apparent power		~	~
20	Total apparent power		~	~

Tab.8 Interwał kalkulacji zapotrzebowania

No.	Demand calculation interval (Unit: minute)
0	1
1	2
2	5
3	10
4	15
5	20
6	30
7	60
8	120
9	180
10	240
11	360
12	480
13	720
14	1440

Tab. 9 Interwał rejestracji zapotrzebowania

No.	Demand record interval
0	1hour
1	2 hours
2	3 hours
3	6 hours
4	12 hours
5	18 hours
6	1 day
7	1 week
8	1 month

Tab.10 Format rejestracji zapotrzebowania

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
year	month	day	hour	minute	second		Demand value (double)					carrier			

Uwaga: Jednostki dla zapotrzebowania mocy: W, var, VA

Register (HEX)	Read/ write	Туре	Description	Remark
9000	RW	unsigned	To be operated channel no.	1~50
0001	DW			0: close the channel
9001	KW	unsigned	Chamlel enable switch	1: start the channel
9002	RW	unsigned	Carrier	Check table 11
9003	RW	unsigned	Record interval	Check table 12
9004	RO	unsigned	Channel records total number	0~200
9005	RW	unsigned	Start item	1~200
9006	RO	unsigned	read	

14. Rejestr parametrów "zamrożenia energii" i rejestracji

Uwaga: Rejestry 9001~9003 mogą zostać zapisane w trybie użytkownika, administratora i fabrycznym.

Kroki do odczytu rejestru zapotrzebowania:

1. Zapis: "to be operated channel no."

2. Odczyt: "channel records total number"

3. Zapis: "Start item", numer domyślny dla mocy to 1, "item 1" oznacza najnowszy rekord.

4. Wysłać komendę "read' (Modbus), wpisać długość w bajtach, która ma być odczytana w postaci N*8 (N odnosi się do ilości N rekordów zapotrzebowania, które mają być odczytane , N≤15. Długość jednego rekordu to 16 bajtów (szczegóły w Tab. 13)

5. Po zakończeniu "read", rejestr "start item" zostanie zaktualizowany do następnego nieodczytanego rekordu. Użytkownik może powtórzyć krok 4, aby realizować stały odczyt, bez potrzeby aktualizacji "start item".

Tab.11	"Zamrożenie"	energii

No.	Freeze data name	No.	Freeze data name	No.	Freeze data name
0	Input total active energy	15	Phase C output reactive energy	30	Tariff 3 input active energy
1	Output total active energy	16	Total apparent energy	31	Tariff 4 input active energy
2	Phase A input active energy	17	Phase A apparent energy	32	Tariff 1 input reactive energy
3	Phase B input active energy	18	Phase B apparent energy	33	Tariff 2 input reactive energy
4	Phase C input active energy	19	Phase C apparent energy	34	Tariff 3 input reactive energy
5	Phase A output active energy	20	Total net active energy	35	Tariff 4 input reactive energy
6	Phase B output active energy	21	Phase A net active energy	36	Tariff 1 output active energy
7	Phase C output active energy	22	Phase B net active energy	37	Tariff 2 output active energy
8	Input total reactive energy	23	Phase C net active energy	38	Tariff 3 output active energy
9	Output total reactive energy	24	Total net reactive energy	39	Tariff 4 output active energy
10	Phase A input reactive energy	25	Phase A net reactive energy	40	Tariff 1 output reactive energy
11	Phase B input reactive energy	26	Phase B net reactive energy	41	Tariff 2 output reactive energy
12	Phase C input reactive energy	27	Phase C net reactive energy	42	Tariff 3 output reactive energy
13	Phase A output reactive energy	28	Tariff 1 input active energy	43	Tariff 4 output reactive energy
14	Phase B output reactive energy	29	Tariff 2 input active energy	44	

No.	OBIS	1P2W	3P3W	3P4W
0	Input total active energy		~	~
1	Output total active energy		~	~
2	Phase A input active energy	~	~	~
3	Phase B input active energy			~
4	Phase C input active energy		~	~
5	Phase A output active energy	~	~	~
6	Phase B output active energy			~

7	Phase C output active energy		~	~
8	Input total reactive energy		~	~
9	Output total reactive energy		~	~
10	Phase A input reactive energy	~	~	~
11	Phase B input reactive energy			~
12	Phase C input reactive energy		~	~
13	Phase A output reactive energy	~	~	~
14	Phase B output reactive energy			~
15	Phase C output reactive energy		~	~
16	Total apparent energy		~	~
17	Phase A apparent energy	~	~	~
18	Phase B apparent energy			~
19	Phase C apparent energy		~	~
20	Total net active energy		~	*
21	Phase A net active energy	~	~	~
22	Phase B net active energy			~
23	Phase C net active energy		~	~
24	Total net reactive energy		~	~
25	Phase A net reactive energy	~	~	~
26	Phase B net reactive energy			~
27	Phase C net reactive energy		~	~
28	Tariff 1 input active energy	~	~	~
29	Tariff 2 input active energy	~	~	~
30	Tariff 3 input active energy	~	~	~
31	Tariff 4 input active energy	~	~	~
32	Tariff 1 input reactive energy	~	~	~
33	Tariff 2 input reactive energy	~	~	~
34	Tariff 3 input reactive energy	~	~	2
35	Tariff 4 input reactive energy	~	~	1
36	Tariff 1 output active energy	~	~	~
37	Tariff 2 output active energy	~	~	~
38	Tariff 3 output active energy	~	~	~
39	Tariff 4 output active energy	~	~	~
40	Tariff 1 output reactive energy	~	~	~

41	Tariff 2 output reactive energy	~	~	~
42	Tariff 3 output reactive energy	~	~	~
43	Tariff 4 output reactive energy	~	~	~

Tab.12 Interwał "zamrożenia" energii

No.	Energy freeze data storage interval
0	1 day
1	1 week
2	1 month

Tab.13 Format rejestracji "zamrożenia" energii

I				-		-		_		-						
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ł																<u> </u>
	year	month	day	hour	minute	second		Energy value(double)					OBIS			

Uwaga: rzeczywista wartość energii=wartość rejestru. Jednostka: Wh, varh, Vah

15. Rejestr parametrów krzywej obciążenia i rejestracji

Register (HEX)	Read/ write	Туре	Description	Remark
A000	RW	unsigned	To be operated channel no.	1~16
4001	PW	unsigned	Channel enable cuvitch	0: close the channel
AUUI	KW	unsigned	Chamiler enable switch	1: start the channel
A002	RW	unsigned	Carrier	Check table 14
A003	RW	unsigned	Record interval	Check table 15
A004	RO	unsigned	Channel records total number	0~2000
A005	RW	unsigned	Start item	1~2000
A006	RO	unsigned	read	

Uwaga: Rejestry A001~A003 mogą zostać zapisane w trybie użytkownika, administratora i fabrycznym.

Kroki do odczytu rejestru krzywej obciążenia:

1. Zapis: "to be operated channel no."

2. Odczyt: "channel records total number"

3. Zapis: "Start item", numer domyślny dla mocy to 1, "item 1" oznacza najnowszy rekord.

4. Wysłać komendę "read' (Modbus), wpisać długość w bajtach, która ma być odczytana w postaci N*8 (N odnosi się do ilości N rekordów zapotrzebowania, które mają być odczytane , N≤15. Długość jednego rekordu to 16 bajtów (szczegóły w Tab. 16)

5. Po zakończeniu "read", rejestr "start item" zostanie zaktualizowany do następnego nieodczytanego rekordu. Użytkownik może powtórzyć krok 4, aby realizować stały odczyt, bez potrzeby aktualizacji "start item".

Tab.14 Obciążenie

No.	Load	No.	Load	N	Load
<u> </u>					Phase B output
0	Phase A voltage	13 Phase A input active energy		26	reactive energy
					Phase C output
1	Phase B voltage	14	Phase B input active energy	27	reactive energy
2	Diana Carattana	15	Marco Climato di Santo di Sant	20	Total output active
2	Phase C voltage	15	Phase C input active energy	28	energy
2	Dhase AD welters	16	Total input action anorary	20	Phase A apparent
2	Phase AB voltage	10	Total input active energy	29	energy
4	Phase BC voltage	17	Phase A output active energy	20	Phase B apparent
-	4 Phase BC voltage		Flase A output active energy		energy
5	Phase AC voltage	19	Dhace B output active energy	21	Phase C apparent
<u>ر</u>	Flase AC voltage	10	Fliase D output active energy	51	energy
6	Phase A current	19	Phase C output active energy	32	Total apparent energy
7	Phase B current	20	Total output active energy	33	Phase A power factor
8	Phase C current	21	Phase A input reactive energy	34	Phase B power factor
9	Neutral current	22	Phase B input reactive energy	35	Phase C power factor
10	Total active power	23	Phase C input reactive energy	36	Total power factor
11	Total reactive	24	Total input coactive energy		
11	power	24	Total input feactive energy		
12	Total apparent	25	Dhace A output seactive energy		
12	power	23	Phase A output leactive energy		

No.	OBIS	1P2W	3P3W	3P4W
0	Phase A voltage	~		~
1	Phase B voltage			~
2	Phase C voltage			~
3	Phase AB voltage		~	~
4	Phase BC voltage		~	~
5	Phase AC voltage		~	~
6	Phase A current	~	~	~
7	Phase B current		~	~
8	Phase C current		~	~
9	Neutral current			~
10	Total active power	~	~	~
11	Total reactive power	~	~	~
12	Total apparent power	~	~	~
13	Phase A input active energy	~	~	~
14	Phase B input active energy			~
15	Phase C input active energy		~	~

16	Total input active energy		~	~
17	Phase A output active energy	~	~	~
18	Phase B output active energy	~		~
19	Phase C output active energy		~	~
20	Total output active energy		~	~
21	Phase A input reactive energy	~	~	~
22	Phase B input reactive energy	~		~
23	Phase C input reactive energy		~	~
24	Total input reactive energy		~	~
25	Phase A output reactive energy	~	~	~
26	Phase B output reactive energy			~
27	Phase C output reactive energy		~	~
28	Total output active energy		~	~
29	Phase A apparent energy	~	~	~
30	Phase B apparent energy			~
31	Phase C apparent energy		~	~
32	Total apparent energy		~	~
33	Phase A power factor	~	~	~
34	Phase B power factor			~
35	Phase C power factor		~	~
36	Total power factor		~	~

Tab.15 Interwał rejestracji krzywej obciążenia

No.	Load curve record interval (Unit: minute)
0	1
1	2
2	5
3	10
4	15
5	20
6	30
7	60
8	120
9	180
10	240
11	360
12	480
13	720
14	1440

Tab.16 Format rejestracji krzywej obciążenia

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
year	month	day	hour	minute	second			Loa	d va	lue (d	louble	e)		OBIS	

Uwaga: dla wartości obciążenia napięcia jednostką jest V

dla wartości obciążenia prądu jednostką jest A

dla wartości obciążenia mocy jednostką jest W, var lub VA

dla wartości obciążenia energii jednostką jest Wh, varh, Vah

dla wartości obciążenia współczynnika mocy- brak jednostki

16. Rejestr rejestru systemowego

Register (HEX)	Read/wr ite	Туре	Description	Remark
B000	RO	unsigned	Effective records total numbers	0~500
B001	RW	unsigned	Start item	1~500
B002	RO	unsigned	Read	

Kroki do odczytu rejestru systemowego:

1. Zapis: "effective records total numbers"

2. Zapis: "Start item", numer domyślny dla mocy to 1, "item 1" oznacza najnowszy rekord.

3. Wysłać komendę "read' (Modbus), wpisać długość w bajtach, która ma być odczytana w postaci N*8 (N odnosi się do ilości N rekordów zapotrzebowania, które mają być odczytane , N≤15. Długość jednego rekordu to 16 bajtów (szczegóły w Tab. 17)

4. Po zakończeniu "read", rejestr "start item" zostanie zaktualizowany do następnego nieodczytanego rekordu. Użytkownik może powtórzyć krok 3, aby realizować stały odczyt, bez potrzeby aktualizacji "start item".

Tab. 17 Format rejestru systemowego

0	1	2	3	4	5	6 7~10		11~15
year	month	day	hour	minute	second	Log code (Table 20)	Cleared channel No.(unsigned)	Remain

Tab.18 Kod rejestru systemowego

Code	Content	Data
33	Power off	
34	Power on	
35	Clock change	
36	Wiring change	
37	CT change	
38	PT change	
39	485 address change	

Code	Content	Data
40	485 baud rate change	
41	485 parity bit change	
42	FLASH storage mode change	
43	Active energy clearing operation	
44	Reactive energy clearing operation	
45	Apparent energy clearing operation	
46	Quadrant energy clearing operation	
47	Tariff energy clearing operation	
48	All energy clearing operation	
49	Demand clearing operation	Cleared channel No.
50	Energy freezeclearing operation	Cleared channel No.
51	Load curve clearing operation	Cleared channel No.
52	System log clearing operation	
53	Event log clearing operation	
54	Quality log clearing operation	
55	Alarm numbers clearing operation	
56	External status numbers clearing operation	
57	All energy, demand, energy freeze, load curve, logs clearing operation	

17. Rejestr zdarzeń

Register (HEX)	Read/ write	Туре	Description	Remark
B100	RO	unsigned	Effective records total numbers	0~500
B101	RW	unsigned	Start item	1~500
B102	WO	unsigned	Read	

Kroki do odczytu rejestru systemowego:

1. Zapis: "effective records total numbers"

2. Zapis: "Start item", numer domyślny dla mocy to 1, "item 1" oznacza najnowszy rekord.

3. Wysłać komendę "read' (Modbus), wpisać długość w bajtach, która ma być odczytana w postaci N*8 (N odnosi się do ilości N rekordów zapotrzebowania, które mają być odczytane, N≤15. Długość jednego rekordu to 16 bajtów (szczegóły w Tab. 19)

4. Po zakończeniu "read", rejestr "start item" zostanie zaktualizowany do następnego nieodczytanego rekordu. Użytkownik może powtórzyć krok 3, aby realizować stały odczyt, bez potrzeby aktualizacji "start item".

Tab. 19 Format rejestracji zdarzeń

0	1	2	3	4	5	б	$7 \sim 10$	11	12~15
yea	r month	day	hou r	minute	second	Log code (Table 20)	Alarm value (float)	0 upper limit; 1 lower limit	

Uwaga: Dla danych alarmu prądu jednostką jest A Dla danych alarmu mocy jednostką jest W, var, VA Dla danych alarmu współczynnika mocy – brak jednostki

Tab.20 Kod rejestracji zdarzeń

Code	Content	Code	Content	Code	Content	
6	Phase A current	14	Total reactive power	22	Total power factor	
0	alarm	14	alarm	22	alarm	
7	Phase B current	15	Phase A reactive	22	Phase A power factor	
′	alarm	15	power alarm	25	alarm	
•	Phase C current	16	Phase B reactive	24	Phase B power factor	
8	alarm	10	power alarm		alarm	
9	Neutral current	17	Phase C reactive	25	Phase C power factor	
	alarm	1/	power alarm		alarm	
10	Total active power	10	Total apparent			
	alarm	10	power alarm			
11	Phase A active	10	Phase A apparent			
	power alarm	19	power alarm			
12	Phase B active	20	Phase B apparent			
	power alarm	20	power alarm			
13	Phase C active	21	Phase C apparent			
	power alarm		power alarm			

18. Rejestr jakości energii

Register (HEX)	Read/ write	Туре	Description	Remark	
B200	RO	unsigned	Effective records total numbers	0~500	
B201	RW	unsigned	Start item	1~500	
B202	WO	unsigned	Read		

Kroki do odczytu rejestru systemowego:

1. Zapis: "effective records total numbers"

2. Zapis: "Start item", numer domyślny dla mocy to 1, "item 1" oznacza najnowszy rekord.

3. Wysłać komendę "read' (Modbus), wpisać długość w bajtach, która ma być odczytana w postaci N*8 (N odnosi się do ilości N rekordów zapotrzebowania, które mają być odczytane, N≤15. Długość jednego rekordu to 16 bajtów (szczegóły w Tab. 21)

4. Po zakończeniu "read", rejestr "start item" zostanie zaktualizowany do następnego nieodczytanego rekordu. Użytkownik może powtórzyć krok 3, aby realizować stały odczyt, bez potrzeby aktualizacji "start item".

Tab.21 Format przechowywania danych dot. jakości energii

0	1	2	3	4	5	б	$7 \sim 10$	11	12~15
year	month	day	hour	minute	second	Log code (table 20)	Alarm value (float)	0 upper limit; 1 lower limit	

Uwagi: dla danych napięcia jednostką jest V

Tab.22 Kod jakości energii

Code	Content
0	Phase A voltage alarm
1	Phase B voltage alarm
2	Phase C voltage alarm
3	Phase AB voltage alarm
4	Phase BC voltage alarm
5	Phase AC voltage alarm
26	Phase A voltage total harmonic distortion alarm
27	Phase B voltage total harmonic distortion alarm
28	Phase C voltage total harmonic distortion alarm
29	Phase A lack of phase
30	Phase B lack of phase
31	Phase C lack of phase
32	Frequency unstable

dla danych dotyczących zniekształcenia harmonicznych, jednostką jest wartość rzeczywista zawartości harmonicznych

Register (HEX)	Read/ write	Туре	De	scription	Remark	
C000	WO	unsigned	Remain			
C001	WO	unsigned	IO1		Write 1 clearing	
C002	WO	unsigned	IO2	Counter clearing	Write 1 clearing	
C003	WO	unsigned	IO3	Counter clearing	Write 1 clearing	
C004	WO	unsigned	IO4		Write 1 clearing	
C005	WO	unsigned	Active		Byte 0: 0x55 byte 1: 0x11	
C006	WO	unsigned	Reactive		Byte 0: 0x55 byte 1: 0x22	
C007	WO	unsigned	Apparent	Europe aleraine	Byte 0: 0x55 byte 1: 0x33	
C008	WO	unsigned	Quadrant	Energy clearing	Byte 0: 0x55 byte 1: 0x44	
C009	WO	unsigned	Tariff		Byte 0: 0x55 byte 1: 0x55	
C00A	WO	unsigned	All energy		Byte 0: 0x55 byte 1:0x66	
C00B	wo	WO unsigned	Single	Demand channel	Byte 0: 0x55 byte	
			channel	clearing	1: channel No.	

19. Rejestr czyszczenia danych

C00C	WO	unsigned	All		Byte 0: 0x55 byte	1: 0x77
C00D	wo	unsigned	Single	Europe from	Byte 0: 0xAA byte	
			channel	chergy neeze	1: channel No.	
C00E	WO	unsigned	All	- channel clearing	Byte 0: 0x55 byte	1: 0x77
C00F	WO	unsigned	Single	Load curve clearing	Byte 0: 0x5A byte	
			channel		1: channel No.	
C010	WO	unsigned	All		Byte 0: 0x55 byte	1: 0x77
C011	WO	unsigned	System log		Byte 0: 0x55 byte	1: 0x88
C012	WO	unsigned	Event log	Logs clearing	Byte 0: 0x55 byte	1:0x99
C013	WO	unsigned	Quality log		Byte 0: 0x55 byte	1: 0xAA
C014	WO	unsigned	All above data		Byte 0: 0x55 byte	1: 0xBB

 Cort
 wo
 unsigned
 An above data
 Byte 0. 0x55 byte 1. 0x55

 Uwaga: Rejestry w powyższej mogą zostać zapisane w trybie użytkownika, administratora i fabrycznym.

IV. Ochrona środowiska

Urządzenie podlega dyrektywie WEEE 2002/96/EC. Symbol oznacza, że produkt musi być utylizowany oddzielnie i powinien dostarczany do odpowiedniego punktu zbierającego odpady. Nie n go wyrzucać razem z odpadami gospodarstwa domowego. uzyskać więcej informacji należy skontaktować się z przedstawic przedsiębiorstwa lub lokalnych służb odpowiedzialnych za zarząd

odpadami.

MM 2016-04-21

ARZ-5D nr kat. 140151

Miernik mocy 3-fazowy do montażu na szynie DIN

Wyprodukowano w Chinach Importer BIALL Sp. z o.o. UI. Barniewicka 54C 80-299 Gdańsk www.biall.com.pl